期刊文献+

平面二部图的完美匹配集合上的有向根树结构及其生成 被引量:1

Directed Rooted Tree Structure of the Set of Perfect Matchings of Plane Bipartite Graphs and Its Generation
下载PDF
导出
摘要 图的完美匹配或1-因子指覆盖了其所有顶点的独立边集.对含有完美匹配的平面二部图,其所有完美匹配通过某旋转变换形成层次组织结构,可用有向根树或半格表示. A perfect matching or 1 factor of a graph is a set of independent edges covering all the vertices. For a plane bipartite graph G with perfect matchings, it was shown that all perfect matchings of G form a hierarchical structure through a certain rotation transformation, which can be expressed by a directed rooted tree or semilattice. And a novel directed rooted tree structure of the set of perfect matchings of G is established and can be generated by designing an algorithm.
作者 张和平
机构地区 兰州大学数学系
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 1996年第3期7-11,共5页 Journal of Lanzhou University(Natural Sciences)
基金 兰州大学校内青年基金
关键词 平面图 有向图 二部图 完美匹配 有向根树 plane graph tree directed graph bipartite graph perfect matching directed rooted tree
  • 相关文献

参考文献7

  • 1Guo Xiaofeng,J Math Chem,1993年,12卷,163页
  • 2Guo Xiaofeng,J Math Chem,1992年,9卷,279页
  • 3Zhang Fuji,Match,1992年,28卷,289页
  • 4Zhang Fuji,Discrete Appl Math,1991年,32卷,295页
  • 5Jiang W,内蒙古大学学报,1987年,18卷,412页
  • 6He W J,Theorectica Chim Acta,1986年,70卷,447页
  • 7Chen Zhibo,Chem Phys Lett,1985年,15卷,3期,291页

同被引文献7

  • 1KLEIN D J, RANDIC M. Resistance distance[J]. J Math Chem, 1993, 12: 81-95.
  • 2ZHANG H P, YANG Y J. Resistance distance and Kirchhoff index in circulant graphs[J]. Int J Quantum Chem, 2007, 107: 330-339.
  • 3YANG Y J, ZHANG H P. Kirchhoff index of linear hexagonal chains[J]. Int J Quantum Chem, 2008, 108: 503-512.
  • 4MERRIS R. Laplacian matrices of graphs: a survey[J]. Linear Algebra Appl, 1994, 197-198: 143- 176.
  • 5GUTMAN I, MOHAR B. The quasi-wiener and the Kirchhoff indices coincid[J]. J Chem Inf Comput Sci, 1996, 36: 982-985.
  • 6BEN-israel A, GREVILLE T N E. Generalized inverses-theory and application[M]. New:York: Wiley, 1974.
  • 7CAMPBELL S L, MEYER C D. Generalized inverses of linear transformations[M]. London: Pitman, 1979.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部