期刊文献+

基于小波域马尔可夫先验模型的图像去噪方法 被引量:4

Image Denoising Based on Wavelet Domain Markov Random Field Prior Model
下载PDF
导出
摘要 提出了一种基于各向异性马尔可夫随机场(Markovrandomfield,MRF)先验概率模型的图像去噪方法。该方法利用图像小波子带的方向性特点以及小波系数尺度内和尺度间的相关性,将小波系数的分布特征建模为一种各向异性MRF先验概率模型。通过在贝叶斯框架中采用这种先验概率模型可以得到一种具有空间自适应性的贝叶斯萎缩函数。利用这种萎缩函数可以实现对小波系数的修正。实验结果表明利用该方法进行图像去噪能够取得良好的效果,同时可以有效地保留图像的细节。 An image denoising method was proposed based on an anisotropic Markov random field (MRF) prior model. This method modeled the configurations of the wavelet coefficients as an anisotropic MRF. This model took into account inter- and intrascale dependencies between wavelet coefficients and it was adaptive to the wavelet subbands corresponding to three orientations in the image. Based on this prior model in a Bayesian framework, a spatially adaptive Bayesian shrinkage function was obtained and each modified coefficient was decided separately. Experimental results demonstrate this method improves the denoising performance and preserves the details of the image.
作者 崔艳秋 王珂
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第4期890-893,共4页 Journal of System Simulation
基金 国家自然科学基金(59638220)
关键词 图像去噪 各向异性模型 马尔可夫随机场 小渡变换 image denoising anisotropic model Markov random field wavelet transform
  • 相关文献

参考文献14

  • 1Donoho D L,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika (S0006-3444).1994,81:425-455.
  • 2Jansen M.Wavelet thresholding and noise reduction[D].Katholieke Universiteit Leuven,2000.
  • 3Portilla J,Strela V.Image denoising using scale mixtures of Gaussians in the wavelet domain[J].IEEE Transactions on Image Processing (S1057-7149).2003,12(11):1338-1351.
  • 4Achim Alin,Kuruoglu Ercan E.Image denoising using bivariate a-stable distributions in the complex wavelet domain[J].IEEE Signal Processing Letters (S1070-9908).2005,12(1):17-20.
  • 5Fadili Jalal M,Boubchir Larbi.Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities[J].IEEE Transactions on Image Processing (S1057-7149).2005,14(2):231-240.
  • 6Romberg J K,Choi H,Baraniuk R G.Bayesian tree-structured image modeling using wavelet-domain hidden Markov models[J].IEEE Transactions on Image Processing (S1057-7149).2001,10(7):1056-1068.
  • 7Ferrari Ricardo J,Winsor Robin.Digital radiographic imagedenoising via wavelet-based hidden Markov model estimation[J].Journal of Digital Imaging (S0897-1889).2005,18(2):154-167.
  • 8Malfait M,Roose D.Wavelet-bsed image denoising using a Markov Random Field a priori model[J].IEEE Transactions on Image Processing (S1057-7149).1997,6(4):549-565.
  • 9Jansen M,Bultheel A.Empirical Bayes approach to improve wavelet thresholding for image noise reduction[J].J.Amer.Statist.Assoc.(S0162-1459).2001,96(454):629-639.
  • 10Pizurica A,Philips W,Lemahieu I,Acheroy M.A joint inter-and intrascale statistical model for Bayesian wavelet based image denoising[J].IEEE Transactions on Image Processing (S 1057-7149).2002,11(5):545-557.

同被引文献35

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部