期刊文献+

Design of Luenberger function observer with disturbance decoupling for matrix second-order linear systems-a parametric approach 被引量:1

Design of Luenberger function observer with disturbance decoupling for matrix second-order linear systems-a parametric approach
下载PDF
导出
摘要 A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach. A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期156-162,共7页 系统工程与电子技术(英文版)
基金 ThisprojectwassupportedbytheNationalNaturalScienceFoundationofChina(69925308).
关键词 matrix second-order linear systems Luenberger function observers eigenstructure assignment disturbance decoupling matrix second-order linear systems, Luenberger function observers, eigenstructure assignment, disturbance decoupling
  • 相关文献

参考文献16

  • 1Linnemann A. Numerical aspects of disturbance decoupling by measurement feedback.IEEE Trans. Automatic Control, 1987, 32(4): 922-926.
  • 2Van Der Woude J W. Disturbance decoupling and output stabilization by measurement feedback: a combined approach. Control, 1988, 47(1) : 393-412.
  • 3Syrmos V L. Disturbance decoupling using constrained Sylvester equations. Automatic Control, 1994, 39 (4) :797-803.
  • 4Commault C, Dion J M, Benahcene M. Output feedback disturbance decoupling graph interpretation for structured systems. Automatica, 1993, 29(6): 1463-1427.
  • 5Weiland S, Willems J C. Almost disturbance decoupling with internal stability. IEEE Trans. Automatic Control,1989, 34(3): 277-286.
  • 6Duan G R, Liu G P, Thompson S. Disturbance decoupling in descriptor systems via output feedback: a parametric eigenstructure assignment approach. Proc. of the 39th IEEE Conference on Decision and Control Sydney, Australia, 2000. 3660-3665.
  • 7Diwekar A M, Yedavalli R K. Smart structure control in matrix second-order form. Smart Materials and Structures, 1996, 5: 429-436.
  • 8Datta B N, Rincon F. Feedback stabilization of a second-order system: a nonmodal approach. Linear Algebra Applications, 1998, 188-189: 135-161.
  • 9Duan G R, Liu G P. Complete parametric approach for eigenstructure assignment in a class of second-order linear systems. Automatica, 2002, 38: 725-729.
  • 10Nichols N K, Kautsky J. Robust eigenstructure assignment in quadratic matrix polynomials: nonsingular case. SIAM J. Matrix Anal. Appl, 2001, 23(1):77-102.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部