摘要
设B={0,1}是二元布尔代数,Cn(r)是B上所有n阶r—循环矩阵组成之集,Gn=∪n-1r=0Cn(r),则Gn对二元布尔矩阵的乘法构成一个半群,称它为广义循环布尔矩阵半群.对于半群Gn中任一个固定的非零c—循环矩阵C,在Gn中定义一个新的运算“”如下:A,B∈Gn,AB=ACB.则(Gn,)也构成一个半群,称(Gn,)为(带有三明治矩阵C)的广义循环布尔矩阵三明治半群,并记为Gn(C).本研究刻画了半群Gn(C)中的所有正则元,并且给出求Gn(C)中每一个正则元的所有g-逆的一个方法.
Let n be a Boolean algebra B = positive integer, and Cn (r) be the set of all B={0,1}, Gn=∪r=0^n-1 Cn(r).Foranyfixed Cin trio n ×n r - circulant matrices over the Gn. We can define an operation" * " in Gn as follows: A * B = ACB for any A, B in Gn, where ACB is the usual product of Boolean matrics. Then (Gn, * ) is a semigroup which is called the sandwich semigroup of generalized circulant Boolean matrices with sandwich matrix C and denoted by Gn ( C). In this paper, the regular elements in Gn (C) are characterized and an algorithm to determine all g - inverses for each regular element in Gn (C) is given.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第2期157-161,共5页
Journal of Fuzhou University(Natural Science Edition)
基金
福建省教育厅科研资助项目(JB05041
JB04031)
关键词
广义循环布尔矩阵
三明治半群
正则元
G-逆
generalized eireulant Boolean matrix
sandwich semigmup
regular element
g - inverse