期刊文献+

磁悬浮轴承-转子系统的分岔与混沌特性 被引量:3

Bifurcations and Chaos of an Active Magnetic Bearing-rotor System
下载PDF
导出
摘要 研究磁悬浮轴承-转子系统主共振情形时的非线性动力学行为。由Taylor级数展开得到非线性电磁力的表达式。用Lung-Kutta法计算系统的运动响应。借助Poincare影射和Lyapunov指数对系统的运动形态进行分析。结果发现了在主共振情形下系统中由环面破裂产生的混沌现象及之后的由倍周期分岔导致的混沌现象。 The nonlinear dynamical behaviours of an active magnetic bearing-rotor system were investigated by numerical simulation. Using a Taylor series, the moving differential equations of above system were simplified into simple forms only with lower nonlinear terms. The response was obtained by Lung-Kutta method. To analyze the moving charaters of the system, some Poincare maps were given, and several Lyapunov index numbers were calculated. The results show that there exists chaos induced by both ring crack and double-period bifurcation;the complicatied behaviors in primary resonance may be avoid by adjusting some structural parameters.
机构地区 江苏大学理学院
出处 《润滑与密封》 EI CAS CSCD 北大核心 2006年第4期23-25,共3页 Lubrication Engineering
基金 国家自然科学基金项目(10372037) 江苏省教育厅自然科学基金项目(02KJD130003) 江苏大学高级人才基金项目(04jdg010)
关键词 磁悬浮轴承-转子系统 非线性动力学 主共振 分岔 混沌 active magnetic bearing-rotor system nonlinear dynamics primary resonance bifurcation chaos
  • 相关文献

参考文献6

  • 1M Chinta,A B Palazzolo.Stability and bifurcation of rotor motion in a magnetic bearung[J].Journal of Sound and Vibration,1998,214:793-803.
  • 2J C Ji,L Yu,A Y T Leung.Bifurcation behavior of rotor in active magnetic bearings[J].Journal of Sound and Vibration,2000,235:133-151.
  • 3T Zheng,N Hasebe.Nonlinear dynamic behaviors of a complex rotor-bearing system[J].Journal of Applied Mechanics,2000,67:485-495.
  • 4J Guckenheimer,P Holme.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields[M].Springer-Verlag.
  • 5A H Yfeh,D T Mook.Nonlinear Oscillations[M].New York:John Wiley&Sons,1979.
  • 6毕勤胜,陈章耀,朱玉萍,邹勇.参数激励耦合系统的复杂动力学行为分析[J].力学学报,2003,35(3):367-372. 被引量:7

二级参考文献12

  • 1Maccari A. Approximation solution of a class of nonlinear oscillators in resonance with periodic excitation. Nonlinear Dynamics, 1998, 15:329-343.
  • 2Maccari A. Nonlinear oscillations with multiple resonant or non-resonant forcing terms, Int J Non-linear Mechanics,1999, 34:27-34.
  • 3Maccari A. Modulated motion and infinite-period bifurcation for two non-linearly coupled and parametrically excited van der Pol oscillators, Int J Non-linear Mechanics,2001, 36:335-347.
  • 4Wiggins S. Global Bifurcation and Chaos. New York:Springer, 1988.
  • 5Tien W, Namachchivaya NS, Medhotra N. Nonlinear dynamics of a shallow arch under periodic excitation-Ⅱ.l:linternal resonance, Int J Nonlinear Mechanics, 1994,29, 367-386.
  • 6Malhotra N, Namachchivaya NS. Global bifurcations in externally excited two-degree-of-freedom nonlinear systems.Nonlinear Dynamics, 1995, 8:85-109.
  • 7Bolotin W, Grishko AA, Kounadis AN, et al. Nonlinear panel flutter in remote post-critical domains,Int J Nonlinear Mechanics, 1998, 33:753-764.
  • 8Wolf A, Swift JB, Swinney HL, et al. Determining Lyapunov exponent from a time series. Physica D, 1985, 16:285-317.
  • 9Rand RH, Holmes PJ. Bifurcation of periodic motions into weakly coupled van der Pol oscillators. Int J Nonlinear Mechanics, 1980, 15:387-399.
  • 10Dieci L, Lorenz R, Russell RD. Numerical calculations of invariant tori for two weakly coupled van der Pol oscillators. SIAM J Sci Stat Comput, 1990, 12:607-647.

共引文献6

同被引文献26

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部