期刊文献+

分数阶自相关和FrFT的LFM信号参数估计 被引量:9

Parameter Estimation of LFM Signal Using Fractional Autocorrelation and FrFT
下载PDF
导出
摘要 基于分数阶自相关和分数阶傅里叶变换的特点,提出了一种LFM信号检测与参数估计方法。相对分数阶傅里叶二维扫描法和匹配傅里叶变换,所提方法将检测与参数估计的二维搜索变为一维搜索,快速实现信号检测和参数估计,在多分量LFM信号情况下借助“Clean”的方法来抑制强分量对弱分量的干扰。计算机仿真表明了该算法在低信噪比多分量LFM信号检测与参数估计中的有效性。 In this paper, a fast method for parameters estimation of the multi-component linear frequency modulated (multi-LFM) signal is proposed. The proposed algorithm reduces two-dimensional searches, widely used in the time-frequency based method, FrFT and Chirp Fourier transform, into two one-dimensional searches. With utilizing the discrete FrFT along with Fast Fourier Transform (FFT)algorithm, the proposed method is a computationally fast alternative for LFM signal detection and parameters estimation. Analysis of the multi-LFM signal is performed using the Clean technique. Finally, computer simulations are provided to illustrate performances of the proposed algorithm.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2006年第2期179-182,共4页 Journal of University of Electronic Science and Technology of China
关键词 线性调频信号 分数阶自相关 分数阶傅里叶变换 参数估计 multi-LFM signal fractional autocorrelation FrFT parameter estimation
  • 相关文献

参考文献5

  • 1齐林,陶然,周思永,王越.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学(E辑),2003,33(8):749-759. 被引量:175
  • 2XIA X G.Discrete Chirp-Fourier transform and its application to chirp rateestimation[J].IEEE Transaction on Signal processing,2000,48(11):3 122-3 133.
  • 3NAMIAS V.The fractional Fourier transform and its application in quantummechanics[J].Inst Appl Math,1980,25:241-265.
  • 4OZAKTAS H M,ARIKAN O,KUTAY M A,et al.Digital computation of the fractional Fouriertransform[J].IEEE Transaction on Signal Processing,1996,44(9):2141-2150.
  • 5OKAY A,BOUDREAUX G F.Fractional convolution and correlation via operator methods andapplication to detection of linear FM signals[J].IEEE Transaction on SignalProcessing,2001,49(5):979-993.

二级参考文献21

  • 1Boashash B. Estimating and interpreting the instantaneous frequency of a signal. Proc IEEE, 1992, 80(4): 519-569.
  • 2Diuric P M. Kay S M. Parameter estimation of china signal. IEEE Trans on ASSP, 1990, 38(12): 2118-2126.
  • 3Barbarossa S, Petrone V. Analysis of polynomial-phase signals by the integrated generalized ambiguity function. IEEE Trans on SP, 1997, 45(2): 316-327.
  • 4Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE Trans on AES, 1986, 22(6):708-715.
  • 5Peleg S, Porat B. Linear FM signal parameter estimation from discrete-time observations. IEEE Trans on AES, 1991, 27(4):607-615.
  • 6Haimovich A M, Peckham C, Teti J G, et al. SAR imagery of moving targets: Application of time-frequency distributions for estimating motion parameters. In: Proc 1994 SPIE's International Symposium on Aerospace and Sensing, 1994. 2238:238-247.
  • 7Rao P, Taylor F J. Estimation of instantaneous frequency using the discrete wigner distribution. Electronics Letters, 1990,26(4): 246-248.
  • 8Choi H, Williams W J. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans on SP, 1988, 37(6): 862-871.
  • 9Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Trans On SP, 1995,43(6): 1511-1515.
  • 10Namias V. The fractional Fourier transform and its application in quantum mechanics. J Inst Appl Math, 1980, 25:241-265.

共引文献174

同被引文献52

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部