期刊文献+

自组织人工神经网络与聚类法在矿区沉积物分类中实用性对比 被引量:7

Application of self-organizing mapping artificial neural networks compared with hierarchical clustering analyses in sedimentary type analysis
下载PDF
导出
摘要 为确切判定淮北矿区新第三纪沉积物成因类型,分别用自组织人工神经网络(SOM)和聚类分析方法对宿南等矿区的19组样本进行分类.对比发现SOM的分类结果与实际情况更吻合.从机理和应用方式上探讨了两种方法的功能差异,证明SOM方法分类操作过程简便易行,具有残缺自动识别能力,分类结果唯一,在沉积物无监督成因分类中,优于聚类分析方法. Both SOM (Self-Organizing Mapping) network and hierarchical clustering (HC) methods were tried to classify 19 soil samples from Sunan mining district and near regions for the Neocene sediment type recognition in Huaibei coalfield. It is found that the results of SOM are fit for the known types closer than those of HC. The function differences between the two methods were discussed on their mechanism and applied ways. SOM is proved to be more convenient in classifying applications, and to be able to identify incomplete samples in a unique result without any prior knowledge.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2006年第2期169-173,共5页 Journal of China Coal Society
关键词 自组织人工神经网络 聚类分析 沉积物 粒度分析 SOM network cluster analysis sediments grain-size analysis
  • 相关文献

参考文献12

  • 1Hartigan J A.Clustering algorithms [M].New York:Wiley& Sons,1975.
  • 2Shan Y,Fry N.A hierarchical cluster approach for forward separation of heterogeneous fault/slip data into subsets [ J ].Journal of Structural Geology,2005,27 (5):929 ~ 936.
  • 3Borovec Z.Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure [J].The Science of the Total Environment,1996,177 (1-3):237 ~250.
  • 4Srivaree-ratana C,Konak A,Smith A E.Estimation of all-terminal network reliability using an artificial neural network[J].Computers & Operations Research,2002,29 (7):849 ~ 868.
  • 5付强,王志良,梁川.自组织竞争人工神经网络在土壤分类中的应用[J].水土保持通报,2002,22(1):39-43. 被引量:45
  • 6黄振华,吴诚一.模式识别原理[M].杭州:浙江大学出版社,1996.
  • 7黄京华,沈浩.调查研究中的统计分析方法[M].北京:北京广播学院出版社,1992.
  • 8Kohonen,T.Self-organizing map (2nd ed.) [M].Berlin,Heidelberg:Springer,1995.
  • 9Flanagan J A.Self-organization in Kohonen's SOM [J].Neural Networks,1996,9 (7):1 185 ~ 1 197.
  • 10魏莲,肖慈珣.用自组织神经网络方法实现测井相定量识别[J].物探化探计算技术,2001,23(4):324-327. 被引量:18

二级参考文献5

共引文献61

同被引文献110

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部