期刊文献+

利用散射系数变化测量血糖浓度的研究 被引量:8

A Study of Blood Glucose Concentration Measurement by Scattering Coefficient
原文传递
导出
摘要 论述了血糖浓度变化与溶液的散射系数的关系。在浑浊介质中散射特性取决于散射粒子和溶剂的折射率的相对大小,在血液中葡萄糖浓度的改变会引起血液折射率的变化,从而使血液的散射系数发生改变,从理论上给出了血糖浓度变化时计算散射系数变化的公式,得出了散射系数和血糖浓度成正比的结论。进一步讨论了满足临床应用目标下,散射系数的相对变化的测量精度要达到4.8×10-4,而对于中国人的血液绝对测量精度要达到6.82×10-3mm-1。用双积分球实验验证了理论计算的正确性,使用牛奶作为浑浊介质测量其散射系数与糖浓度的关系,在不同波长下散射系数都随葡萄糖浓度改变而改变,且线性度可以达到0.95以上。由此可以得出结论,血糖浓度可以通过测量散射系数来得到。 The relationship of scattering coefficient and concentration of blood glucose is discussed. The scattering coefficient of turbid media is determined by the relative refractive index of scattering particles to solvent. The variation of blood glucose concentration changes the refractive index of blood, and the scattering coefficient of the blood. It is given that the formuta to calculate the variation of scattering coefficient induced by concentration change of blood glucose concentration based on theoretical analysis, which shows that the scattering coefficient is directhy proportional to the blood gloucose concentration. The measurement accuracy of scattering coefficient relative change should attain 4.8 × 10^-4 to satisfy the requirement of clinical use, and for Chinese, the absolute measurement precision must be higher than 6.82 × 10^-3 mm^-1. Double integrating sphere experiment is used to validate the theory. Milk is used as turbid media to observe the relationship of scattering coefficient and glucose concentration. At every wavelength the scattering coefficients are linearly changed with the glucose concentration and the linearity value is higher than 0.95. The theoretical analysis and the experimental result prove that blood glucose concentration can be measured by scattering coefficient.
出处 《光学学报》 EI CAS CSCD 北大核心 2006年第4期591-594,共4页 Acta Optica Sinica
关键词 医用光学与生物技术 血糖测量 光学参量 双积分球 medical optics and biotechnology blood glucose measurement optical parameters double integrating sphere
  • 相关文献

参考文献14

  • 1L. Heinemann, G. Schmelzeisen. Non-invasive continuous glucose monitoring in type I diabetic patients with optical glucose sensors[J]. Diabetologia, 1998, 41; 848-854
  • 2J. T. Bruulsema, J. E. Hayward, T. J. Farrell et al.. Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient [J]. Opt. Lett., 1997, 22(3): 190-192
  • 3John S. Maier, Scott A. Walker, Sergio Fantini et al.. Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared[J]. Opt.Lett., 1994, 19(24): 2062-2064
  • 4Matthias Kohl, Matthias Essenpreis, Mark Cope. The influence of glucose concentration upon the transport of light in tissue-simulating phantoms [J]. Physics in Medicine and Biology,1995, 40: 1267-1287
  • 5Matthias Kohl, Mark Cope, Mattias Essenpreis et al.. Influence of glucose concentration on light scattering in tissue simulation phantom[J]. Opt. Lett., 1994, 19(24): 2170-2172
  • 6S. R. Arridge, M. Cope, D. T. Delpy. The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis[J]. Physics in Medicine and Biology, 1992, 37(7) : 1531-1560
  • 7Matthew A. Bartlett, Huabei Jiang. Effect of refractive index on the measurement of optical properties in turbid media[J]. Appl.Opt. , 2001, 40(10): 1735-1741
  • 8Robert C. Weast, Melvin J. Astle, CRC Handbook of Chemistry and Physics [M]. 63th. Boca raton: CRC Press, 1982. D-239
  • 9H. C. van de Hulst. Light Scattering by Small Particles [M].New York: Dover, 1981
  • 10C. Lentner, ed. Geigy Scientific Tables[M]. 1984, Vol. 3,69

二级参考文献12

  • 1张镇西,蒋大宗,张志麟,林钧岫,周萍.生物组织光传播特性的研究[J].中国生物医学工程学报,1993,12(3):195-202. 被引量:10
  • 2Ghosh N, Mohanty S K, Majumder S K. Measurement of optical transport properties of normal and malignant human breast tissue.Appl Opt, 2001, 40 (1): 176--184.
  • 3Sankaran V, Everett M J, Maitland D J, et al. Comparison of polarized-light propagation in biological tissue and phantoms. Optics Letters, 1999, 24 (15): 1044--1046.
  • 4Qu J N, MacAulay C, Lain S, et al. Optical properties of normal and carcinomatous bronchial tissue. Appl Opt, 1994, 33 (31):7397 -- 7405.
  • 5Flock S T, Wilson B C, Patterson M S. Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm. Med Phys, 1987, 14 (5): 835--841.
  • 6Vogel A, Dlugos C, Nuffer R, et al. Optical properties of human sclera, and their consequences for transscleral laser applications.Lasers Surg Med, 1991, 11:331--340.
  • 7Graaff R, Aarnoudse J G, de Mul F F M. Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation. Appl Opt, 1989, 28 ( 12 ) :2273 -- 2279.
  • 8Seiyama A, Chen S S, Kosaka H, et al. Microspectroscopic measurement of the optical properties of rat liver in the visible region. J Micro, 1994, 175 (1): 84--89.
  • 9Bolin F P, Preuss L E, Taylor R C, et al. Refractive index of some manmalian tissues using a fiber optic cladding method. Appl Opt, 1989, 28 (12): 2297--2304.
  • 10Li H, Lu Z. Measurement and accuracy analysis of refractive index using spectra reflectivity closes to the total internal reflection. Broc SPIE, 1998, 3548:119--124.

共引文献12

同被引文献101

引证文献8

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部