期刊文献+

基于径向基函数的城市日用水量预测方法 被引量:10

Prediction Method for Based on Radial Basis Function for Daily Water Consumption
下载PDF
导出
摘要 结合城市日用水量影响因素的特点和变化规律,分析探讨了城市日用水量预测模型的求解方法.建立日用水量和其相关因素之间的预测模型,分别采用径向基函数(RBF)网络算法与支持向量机(SVM)回归法求解该预测模型.RBF网络具有结构自适应确定,输出不依赖初始权值的优良特性;SVM回归法采用结构风险最小化准则 (SRM),以统计学习理论作为理论基础,运算速度快,泛化能力强,预测精度高.通过分析验证的结果,证明了该日用水量预测模型的可行性,采用RBF和SVM两种求解方法均能得到满意的结果. Combined with the influencing factors and characteristics of municipal daily water demand, the solution to the consumption model was analyzed. Forecast model for municipal daily water consumption and its influencingfactors was set up, and then radial basis function (RBF) network and support vector machines (SVM) were adopted to solve the model. RBF network has such advantages that the output is independent the initial weight value and the structure can be determined SVM algorithm embodies the structural risk minimization by adaptation. Based on statistical learning theory, the (SRM) principle, which is more rapid more accurate, and has higher generalized performance. Analysis of the experimental results proves that the prediction model of municipal daily water consumption is feasible; the RBF network and SVM can both get satisfactory results.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2006年第4期486-489,共4页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(50278062 50578108).
关键词 城市日用水量 径向基网络 支持向量机 泛化能力 预测模型 municipal daily water consumption radial basis function network support vector machines generalization prediction model
  • 相关文献

参考文献11

  • 1Beccali M,Cellura M,Lo Brano V,et al.Forecasting daily urban electric load profiles using artificial neural networks[J].Energy Conversion and Management,2004,45(18):2879-2900.
  • 2Liao G C,Tsao T P.Application of fuzzy neural networks and artificial intelligence for load forecasting[J].Electric Power Systems Research,2004,70(3):237-244.
  • 3Francis E H,Cao L J.Application of support vector machines in financial time series forecasting[J].Omega,2001,29(4):309-317.
  • 4Kim K J.Financial time series forecasting using support vector machines[J].Neurocomputing,2003,55 (2):307 -319.
  • 5Vapnik V,Golowich S,Smola A.Support Vertor Method for Function Approximation,Regression Estimation,and Signal Processing[M].Cambridge:MA,MIT Press,1997.
  • 6Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Spinger,1995.
  • 7阎立华,吕科峰.城市日用水量预测的神经网络方法[J].沈阳建筑工程学院学报(自然科学版),2004,20(2):136-138. 被引量:10
  • 8杜国明,龚健雅.快速二阶BP网络及其在城市用水量预测中的应用[J].计算机工程与设计,2002,23(9):57-59. 被引量:14
  • 9王维斌,郑丕谔,李金勇.Application of BP NN and RBF NN in Modeling Activated Sludge System[J].Transactions of Tianjin University,2003,9(3):235-240. 被引量:6
  • 10张志涌.精通MATLAB6.5[M].北京航空航天大学出版社,2003..

二级参考文献18

共引文献45

同被引文献88

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部