期刊文献+

对称与图形创意──基于图形组织结构的数学原理与应用(英文) 被引量:4

Symmetry and developing ideas:Construction-based approach to geometry of two-dimensional pattern designs
下载PDF
导出
摘要 艺术家已经意识到“对称”在图形设计以及对形成有规律的从复的图形组织结构的辅助作用。所谓对称,是指设计中的部分内容(母题)在某种数学几何原理的驱动下,有规律地向整个二维平面伸展从而形成完整的设计.在二维平面,总共有四种几何变换(对称操作规程)方式,数学家称这种变换isom etrics(来自希腊词isos=equal(同等)m atron=m easure(测度)。分析从复对称的图形,研究如何遵循数学“法则”等活动,动机不在于数学本身。明显地,“对称”具有双重词义,艺术的与数学的含义是不可分离的。 Many of the graphic designs found in commercial and decorative art possess symmetry: A part of the design ( a motif) is repeated regularly to create the whole design. There are just four different ways in which a motif can be related to a congruent copy of itself if this relationship is described in terms of geometric transformations which preserve shape. To analyze a repeating design to see what makes it"work", and to create original designs using the power of the mathematical "laws" which govern these designs, is a strong non - mathematical motive for studying these theories. Obviously , the word "symmetry " has true dual meaning; Both its artistic and mathematical connotations are seen as inseparable.
作者 林迅
机构地区 上海交通大学
出处 《包装工程》 CAS CSCD 北大核心 2006年第2期157-162,166,共7页 Packaging Engineering
关键词 对称 图形创意 色彩交替 symmetry developing idea color Counterchange design
  • 相关文献

参考文献39

  • 1Woods H J.The geometrical basis of pattern design,part 1:point and line symmetry in simple figures and borders[J].Journal of the Textile Institute,1935,26:197-210.
  • 2Woods H J.The geometrical basis of pattern design,part 2:nets and sateen's[J].Journal of the Textile Institute,Transactions,1935,26:293-308.
  • 3Woods H J.The geometrical basis of pattern design,part 3:geometrical symmetry in plane patterns [ J].Journal of the Textile Institute,Transactions,1935,26:341-357.
  • 4Woods H J.The geometrical basis of pattern design,part 4:counterchange symmetry in plane patterns[ J].Journal of the Textile Institute,Transactions,1936,27:305-320.
  • 5Coxeter H S M.Introduction to Geometry[M].New York:Wiley,1968.
  • 6Jeger M.Transformation Geometry[ M].New York:Wiley,1966.
  • 7Guggenheimer H W.Plane Geometry and Its Groups[M].San Francisco:Holden-Day,1967.
  • 8Yale P B.Geometry of Symmetry[ M].San Francisco:Holden-Day,1968.
  • 9Gans D.Transformation and Geometries[M].New York:Appleton-Century-Croft,1969.
  • 10Ewald G.Geometry:An Introduction[M].CA:Wadsworth,Belmont,1971.

同被引文献18

  • 1童乔慧.色彩与铺装——澳门城市景观中的海韵[J].规划师,2004,20(3):55-57. 被引量:9
  • 2郭春华,李宏彬.园林铺装艺术探讨[J].技术与市场(园林工程),2005(11):12-15. 被引量:8
  • 3杨先艺,曹献馥,张欣.论仿生设计之美[J].装饰,2005(11):88-89. 被引量:29
  • 4廖荣盛.论视觉传达设计中的视觉流程[J].装饰,2006(7):103-103. 被引量:8
  • 5Anthoine A. Derivation of the in-plane elastic characteristics of masony through homogenization theory[J].{H}International Journal of Solids and Structures,1995,(02):137-163.
  • 6Zucchini A,Lourenco P B. A micro-mechanical homogenisation model for masonry:application to shear walls[J].{H}International Journal of Solids and Structures,2009,(46):871-886.
  • 7Wu C Q,Hao H. Numerical derivation of averaged material properties of hollow concrete block masonry[J].Engineering Structures,2008,(03):870-883.doi:10.1016/j.engstruct.2007.05.017.
  • 8林迅.对称与图形创意[M]{H}上海:上海交通大学出版社,2009.
  • 9Yang C X,W Y Y,Yang W J. Research on the rigid homogenization theory of masonry sructures based on regular tessellation theory[J].Applied Mechanics and Materials,2012,(204-208):790-798.
  • 10Mistler M,Anthoine A,Butenweg C. In-plane and out-of-plane homogenisation of masonry[J].{H}Computers & Structures,2007,(1-4):1321-1330.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部