期刊文献+

基于小波阈值方法的电能质量扰动去噪分析 被引量:8

De-noising Analysis of Power Quality Disturbance Based on Wavelet Threshold
下载PDF
导出
摘要 在小波变换的基础上,分析了硬阈值和软阈值去噪方法的不足,提出了一种新的基于小波分解和小波重构的阈值去噪方法———软硬阈值折衷方法。该方法将小波系数经过软硬阈值折衷法处理后,可以改善小波系数在阈值处的连续性,使重构信号不会振荡,又使变换后的重构信号与实际信号误差最小。通过仿真验证,该算法可以获得很好的去噪效果,消除扰动检测中的噪声影响,从而为噪声环境中电能质量扰动的检测和定位提供了良好的依据。 Based on the wavelet transform(WT) technology ,this paper analysis the deficiency of hard-threshold and soft-threshold ,proposes an new threshold method based on the wavelet decompound and reconfiguration ——the incorporation of soft-threshold and hard-threshold. The WT coefficient disposed by the compromise of the hard and soft threshold method can reform its continuity on the threshold and guarantee the reconstituted single unable to surge, also can make the signal error smallest. The results of the simulation verifies that the incorporation of soft- threshold and hard-threshold can obtain favorable de-noising purpose and eliminate noise's infection, consequently provide favorite warrant for the detection and location of the disturbance of power quality in the noise circumstance .
出处 《太原理工大学学报》 CAS 北大核心 2006年第2期184-186,217,共4页 Journal of Taiyuan University of Technology
关键词 电能质量 小波去噪 阈值方法 power quality wavelet de-noising threshold
  • 相关文献

参考文献2

二级参考文献29

  • 1SANTOSO S,POWERS E J,GRADY W M,et ol. Power quality disturbance waveform recognition using wavelet-based neural classifier, Part Ⅱ: Application[J]. IEEE Trans. on Power Delivery, 2000,15 ( 1 ) : 229-235.
  • 2ELMITWALLY A,FARGHAL S,KANDIL M,et al. Proposed wavelet-neurofuzzy combined system for power quality violations detection and diagnosis[J]. IEE Proc.Gener. Trans. Distrib. ,2001,148( 1 ) : 15-20.
  • 3KEZUNOVIC M,LIAO Y. Automated analysis of power quality disturbances[A]. Electricity Distribution,2001,Part 1 : Contributions, CIRED [ C ]. [ s.l. ] : IEE, 2001.18-21.
  • 4HUANG Shyh-jier,YANG Tsai-ming,HUANG Jiann-tseng.FPGA realization of wavelet transform for detection of electric power system disturbances[J]. IEEE Trans. on Power Delivery,2002,17(2) :388-394.
  • 5LEE J Y,WON Y J,JEONG J M,et al. Classification of power disturbances using feature extraction in time-frequency plane[J]. Electronics Letters,2002,38(15):833-835.
  • 6PARSONS A C,GRADY W M,POWERS E J,et al. A direction finder for power quality disturbances based upon disturbance power and energy[J]. IEEE Trans.on Power Delivery, 2000,15 (3) : 1081-1086.
  • 7HUANG Shyh-jier,HSIEH Cheng-tao. Feasibility of fractal-based methods for visualization of power system disturbances[J].ElectriCai Power & Energy Systems,2001,23( 1 ) :31-36.
  • 8HUSSAIN A,SUKAIRI M H,MOHAMED A,et al. Automatic detection of power quality disturbances and identification of transient signals[A]. International Symposium on Signal Processing and its Applications(ISSPA)[C].Kuala Lumpur,Malaysia: [s.n.] ,2001.13-16.
  • 9BRITO N S D,SOUZA B A,PIRES F A C. Daubechies wavelets in quality of electrical power[A]. The 8th International Conference on Harmonics and Quality of Power(ICHQP'98)[C]. [s.l.] :ICHQP, 1998. 511-515.
  • 10SURYA S,POWERS E J,MACK Y W,et al. Power quality assessment via wavelet transform analysis[J]. IEEE Trans. on Power Defivery, 1996,11(2) :942-930.

共引文献91

同被引文献47

引证文献8

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部