期刊文献+

抛物积分-微分方程的Mortar型有限体积元方法L^2范数的误差估计

Mortar Finite Volume Element Method for Parabolic Integro-differential Equations:L^2 Error Estimation
下载PDF
导出
摘要 研究了二维抛物积分-微分方程的基于Crouze ix-Raviart元的Mortar型有限体积元方法.为了得到误差估计,引进了Mortar型R itz-Volterra投影算子并得到了它在L2范数意义下的逼近性质;证明了微分方程的真解和Mortar型有限体积元方程的解在L2-范数意义下的误差估计是最优的. A mortar finite volume element method for two-dimensional parabolic integro-differential equations is studied. This method is based on the mortar Crouzeiz-Raviart finite element space. In order to get the error estimates, the mortar Ritz-Volterra projection is introduced and its approximation property in L^2 norm is obtained. It is proved that the mortar finite volume element approximation derived are convergent with the optimal order in L^2 -norm.
作者 毕春加
出处 《烟台大学学报(自然科学与工程版)》 CAS 2006年第2期98-105,共8页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(10471079) 烟台大学博士基金资助项目(SX03B20)
关键词 Mortar型有限体积元 CROUZEIX-RAVIART元 微分积分方程 误差估计 Mortar finite volume element Crouzeix-Raviart element parabolic integro-differentialequations error estimates.
  • 相关文献

参考文献4

  • 1毕春加.抛物积分-微分方程的Mortar型有限体积元方法H^1-范数的误差估计[J].烟台大学学报(自然科学与工程版),2005,18(3):175-183. 被引量:1
  • 2Bi chunjia,Li Likang,The mortar finite volume element method with the Crouzeix-Raviart element for elliiptic problems[J].Comp Methods Appl Mech Engrg,2003,192:15-31.
  • 3Marcinkowski L.The mortar element method with locally nonconforming elements[J].BIT,1999,7:719-736.
  • 4Chatzipantelidis P.A finite volume method based on the Crouzeix-Raviart element for elliptic PDE's in two dimensions[J].Numer Math,1999,82:409-432.

二级参考文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部