摘要
给出了不具有开原象的Gθ-对应和Gθ-优化映象的概念;在非仿紧的G-凸空间中证明了关于Gθ-对应和Gθ-优化映象的极大元存在定理.作为应用,在非仿紧的G-凸空间中建立了具有无限个选手和Gθ-优化选择对应的定性博弈和广义博弈的平衡存在定理.
New classes of Gθ correspondences and Gθ -majorized mappings without open lower sections are introduced in G-convex spaces. Some existence theorems of maximal elements for Gθ -correspondences and Gθ -majorized mappings are obtained under nonparacompact setting of G-convex spaces. As applications, some new equilibrium existence theorems for qualitative games and generalized games with infinite set of players and Gθ majorized preference correspondences are established under nonparacompact setting of G-convex spaces.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第2期1-8,共8页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10471113)重庆市自然科学基金资助项目(CSTC,2005BB2097).
关键词
G-凸空间
Gθ-对应
Gθ-优化映象
极大元
广义博弈
G-convex space
Gθ -correspondence
Gθ majorized mapping
maximal element
generalized game