摘要
群G的子群H称为半置换的,若对任意的K≤G,只要(|H|,|K|)=1,就有HK=KH。H称为s-半置换的,若对任意的p||G|,只要(p,|H|)=1,就有PH=HP,其中P∈Sylp(G)。本文利用极小子群及极大子群的s-半置换性得到有限群为p-幂零群的一些充分条件。
Let G be a finite group. A subgroup H of a group G is called semipermutable if it is permutable with every subgroup K of G with ( | H | , | K | ) = 1 , and s- semipermutable if it is permutable with every Sylow p- subgroup of G with (p, |H| ) = 1. The influence of s- semipermutablity of minimal subgroups and maximal subgroups of Sylow subgroup of a finite group on its p- nilpotence are investigated.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第2期1-3,8,共4页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金资助项目(10271119)
关键词
极小子群
极大子群
S-半置换子群
P-幂零群
有限群
minimal subgroup
maximal subgroup
s- semipermutable subgroup
p- nilpotent group
finite group