期刊文献+

机器学习技术在生物信息挖掘中的方案探讨 被引量:2

Scheme Exploration of Machine learning approaches in Bioinformatics Mining
下载PDF
导出
摘要 后基因时代,探索和解释隐藏在分子生物学数据库中的有用信息是对生物信息学研究人员的巨大挑战!为了解决分子生物学中遇到的这些难题,有效及廉价的方法是非常必要的.机器学习是一个崭新的计算机应用领域,而生物信息学是生物学与计算机科学以及应用数学等学科相互交叉而形成的一门新兴学科.本文分析了机器学习技术的内容,介绍了生物信息学的内涵和新的应用技术,同时探索了机器学习技术对生物信息挖掘应用的途径.这些方法有助于加速生物分子结构预测、基因发现、基因组学和蛋白组学等方面的研究进展. Exploring and explaining the knowledge hidden in the biomolecular has become the grand challenge for bioinformatics in the post genome era. An efficient and inexpensive approach is required to solve problems in molecular biology ;Machine learning is a brand--new computer application realm, but bioinformatics is a newly arising course that biology crosses with computer science and applied mathematics etc. This paper outlines machine learning contents and research methods, introduce the content that bioinformatics with the new applied technique, introduces and scoops out the applied path to bioinformation mining at the same time. These approaches help to accelerate several major researches (biomolecular structure prediction, gene finding, genomics and protemics).
作者 张震 刘兴平
出处 《广西民族学院学报(自然科学版)》 CAS 2006年第1期108-112,共5页 Journal of Guangxi University For Nationalities(Natural Science Edition)
关键词 机器学习 生物信息学 学习方法 数据库 基因 Machine learning Bioinformatics Learning methods Database Gene
  • 相关文献

参考文献5

  • 1张春霆.生物信息学的现状与展望[J].世界科技研究与发展,2000,22(6):17-20. 被引量:74
  • 2Su S.Application of knowledge discovery to molecular biology:identifying structural regularities in proteins[A].Proceedings of the Pacific Symposium on biocomputing[C].World Scientific Press,Singapore,1999,190-201.
  • 3周海廷.机器学习与生物信息学[J].信息与控制,2003,32(4):352-357. 被引量:4
  • 4Attwood TK.The babel of bioinformatics[J].Science,2000,290:471-473.
  • 5Lincoln Stein.Creating a bioinformatics nation[J].Nature,2002,417:119-120.

二级参考文献16

  • 1Benson D A, et al. GenBank [ J ]. Nuclei Acids Research.2000, 28:15 -18.
  • 2Backofen R, Gilbert D. Bioinformatics and constraints [ J]. Constraints, 2001,6: 141 -156.
  • 3Stormo G, et al. Use of the perceptron algorithm to distinguish translational initiation in E. coli [ J ]. Nuclei Acids Research,1982,10:2997 -3011.
  • 4Su S, et al. Application of knowledge discovery to molecular biology : identifying structural regularities in proteins [ A ]. Proceedings of the Pacific Symposium on Biocomputing [C]. 1999. 190-201.
  • 5Gilbert D, et al. Topology-based protein structure comparison using a pattern discovery technique [ A]. Proceedings of the AISB-00 Symposium on AI in Bioinformatics [C]. 2000. 11 -17.
  • 6Zweiger G. Knowledge discovery in gene-expression microarray data: mining the infonnation output of the genome [ J ] . Trends in Biotechnology, 1999, 17 : 429 - 436.
  • 7Salzberg S. Locating protein coding regions in human DNA using a decision tree algorithm[J]. J. Comp. Biol, 1995,2:473 -485.
  • 8Selbig J, et al. Decision tree-based formation of consensus protein secondary structure prediction [ J ]. Bioinformatics, 1999,15 :1039 - 1046.
  • 9Cai D, et al. Modeling splice sites with Bayes networks [ J ],Bioinformatics, 2000,16 : 152 - 158.
  • 10Schmidler S C. Bayesian segmentation of protein secondary structure [J]. J. Comp. Biol, 2000,7:233 -248.

共引文献74

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部