期刊文献+

基于改进软阈值法的电能质量扰动信号去噪 被引量:12

Power quality disturbance signals de-noising based on improved soft-threshold method
下载PDF
导出
摘要 近年来,电能质量问题日益受到关注。为了对电能质量进行分析与评估,需要对其进行监测,但是在信号采集的过程中会受到噪声的影响,给分析带来困难。基于小波变换的软阈值法去噪是比较有效的,本文在正态分布3σ原则的基础上,提出了一种改进的软阈值去噪方法。对典型的电能质量扰动信号进行了去噪仿真,对重构信号进行了扰动检测,仿真结果表明,与通用软阈值法相比,该方法提高了检测正确率。 Recently, power quality issues have captured more attention. It is necessary to monitor power quality in order to analyze and evaluate it. But noises will influence the signals during data collection. It is hard to analyze signals correctly. Soft-threshold de-noising method based on wavelet transform is effective. Considering that the noise of power system is Gauss white noise commonly, which obeys normal distribution, this paper proposes an improved soft-threshold de-noising method based on 3σ principle of normal distribution, typical power quality disturbance signals including sag, swell, interruption and transient impulse are simulated, and the reconstructed signals disturbance is detected. Comparing with universal soft-threshold de-noising method, simulation results show that the rate of accurate detection is improved by this method.
出处 《电工电能新技术》 CSCD 北大核心 2006年第2期34-38,共5页 Advanced Technology of Electrical Engineering and Energy
关键词 电能质量 小波变换 软阈值 去噪 power quality wavelet transform soft-threshold de-noising
  • 相关文献

参考文献12

  • 1A M Gaouda,M M A Salama,M R Sultan,et al.Waveletbased signal processing for disturbance classification and measurement[J].IEE Proc.-Generation,Transmission and Distribution,2002,149(3):310-318.
  • 2朱锋峰,任震,黄雯莹.基于两个实值小波变换定量检测电能质量扰动的新方法[J].电网技术,2003,27(11):52-54. 被引量:15
  • 3Yang H T,Liao C C.A de-noising scheme for enhancing wavelet-based power quality monitoring system[J].IEEE Trans.on Power Delivery,2001,16(3):353-360.
  • 4Yang H T,Liao C C,Yang P C,et al.A wavelet based power quality monitoring system -considering noise effects[A].Proc.of International Conference on Electric Power Engineering[C].Budapest,Hungary,1999.224.
  • 5Yang H T,Liao C C.A correlation-based noise suppression algorithm for power quality monitoring through wavelet transform[A].Proc.POWERCON 2000[C].Perth,Australia,2000.1311-1316.
  • 6曹海翔,邓晖,姜建国,苏鹏声.利用小波变换抑制数字相位测量中的噪声[J].电工电能新技术,1999,18(2):5-9. 被引量:4
  • 7欧阳森,王建华,耿英三,宋政湘,陈德桂,张桂青.基于小波和神经网络的电能质量辨识方法[J].电工电能新技术,2003,22(3):32-36. 被引量:14
  • 8彭玉华(Peng Yuhua).小波变换与工程应用(Wavelet transform and engineering application)[M].北京:科学出版社 (Beijing:Science Press),1999.
  • 9Donoho D L.De-noising by soft-thresholding[J].IEEE Trans.on Information Theory,1995,41(3):613-627.
  • 10Medina C A,Alcaim A,Apolinario,et al.Wavelet denoising of speech using neural networks for threshold selection[J].IEE Electronics Letters,2003,39(25):1869-1871.

二级参考文献21

  • 1杨福生.小波变换的工程分析与应用[J].-,1996,3.
  • 2曹海翔.小波变换用于相位差测量的研究.清华大学硕士学位论文[M].,1997.20-21.
  • 3[1]Gaouda A M,Kanoun S H,Alama M A et al.Pattern recognition applications for power system disturbance[J].IEEE Trans on Power Delivery,2002,17(3):677-683.
  • 4[2]Shyh J H,Cheng T H,Ching L H.Application of Morlet wavelets to supervise power system disturbances[J].IEEE Trans on Power Delivery,1999,14(1):235-243.
  • 5[4]Gaouda A M,Salama M M A,Sultan M R et al.Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J].IEEE Trans on Power Delivery,2000,15(2):478-485.
  • 6[5]Angrisani L,Daponte P,Apuzzo M D.A Measurement method based on the wavelet transform for power quality analysis[J].IEEE Trans on Power Delivery,1998,13(4):990-998.
  • 7林海雪.论电能质量标准[J].中国电力,1997,30(3):9-10. 被引量:60
  • 8Stones J, Collinson A. Power quality [J]. Power Engineering Journal, 2001, 15(2) : 58-64.
  • 9Dash P K, Mishra S, Salama M, et al.. Classification of power system disturbances using a fuzzy expert system and a Fourier linear combiner [J]. IEEE Trans. on Power Delivery, 2000, 15(2): 472-477.
  • 10Santoso S, Powers E J, Grady W M, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier, partl: Theoretical foundation, Part 2: Application [J]. IEEE Trans. on Power Delivery, 2000, 15(1 ) :222-235.

共引文献30

同被引文献70

引证文献12

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部