期刊文献+

基于边缘约束和边缘吸引力场正则化的多目标轮廓提取算法

Multi-Target Extraction Algorithm Based on Edge Restriction and Attraction Field Regularization
下载PDF
导出
摘要 拓扑自适应模型是一种有效的多目标轮廓提取算法.但在MR脑图像的应用中却遇到了许多问题。针对该模型所存在的问题.提出一种基于边缘约束和边缘吸引力场正则化的多目标轮廓提取算法。算法利用关于目标轮廓的位置信息和区域信息对切片图像的边缘吸引力场进行边缘约束.得到仅包含目标的边缘图.从而减少相邻结构的边缘对曲线收敛的影响。同时.对进行边缘约束之后得到的边缘吸引力场进行正则化处理.扩大轮廓的搜索范围.增强轮廓模型对凹边缘的搜索能力和对断裂边缘正确提取的能力。实验证明.该算法可以快速有效地在MR脑图像中提取目标轮廓。 The topologically-adaptable model is an effective method for the contour detection of multiple objects on an image. However, it meets many problems when we apply it to MR brain images, such as poor convergence to boundary concavities, resulting from the broken boundary, and miserable anti-noise ability. In this paper, we proposes a new algorithm, named multi-target extraction algorithm based on edge restriction and attraction field regularization, to overcome these shortcomings. This new algorithm uses prior knowledge about target to perform edge restriction to get the only edge of the object of interest and to regularize attraction field to enlarge attraction field. Results show that the new algorithm can extract the target contour quickly and accurately when we apply it in MR brain images.
出处 《中国医疗器械杂志》 CAS 2006年第2期97-101,116,共6页 Chinese Journal of Medical Instrumentation
关键词 边缘约束 边缘吸引力场正则化 MR脑图像分割 模型 edge restriction, attraction field regularization, MR brain segmentation
  • 相关文献

参考文献13

  • 1P.Taylor.Invited Review:Computer aids for decision-making in diagnostic radiology-a literature review.Brit.J.Radiol,1995,68:945-957.
  • 2S.M.Larie and S.S.Abukmeil.Brain abnormality in schizophrenia a systematic and quantitative review of volumetric resonance imag ing studies.J.Psych,1998,172:110-120.
  • 3A.P.Zijdenbos and B.M.Dawant.Brain segmentation and white matter lesion detection in MR images.Critical Reviews in Biomedical Engineering,1994,22:401-465.
  • 4A.J.Worth and N.Makris.Neuroanatomical segmentation in MRI technological objectives.Int.J.Patt.Rec.Art.Intel,1997,11:1161-1187.
  • 5Kass.M,Witkin A and Terzopouls.D.Snake:active contour models.Int.J.Computer Vision,1987,1:321-331.
  • 6Tim McInemey and Demtri Terzopoulos.Deformable models in medical image analysis:a survey.Medical Image Analysis,1996,1:91-108.
  • 7Osher.S and Sethian.J.A.Fronts propagating with curvature dependent speed:algorithms based on Hamilton-Jacobi formulation.Journal of Computational Physics 1988,79:12-49.
  • 8R.Malladi and J.Sethian.Shape Modeling with Front Propagation:A level set approach.IEEE Trans.Pattern Analysis and Machine Intelligence,1995,17(2):158-175.
  • 9Tim McInerney and Demtri Terzopoulos.Topologically Adaptable Snakes[J].Proc.of the Fifth Int.Conf.on Computer Vision,1995,19:840-845.
  • 10Tim McInerney and Demtri Terzopoulos.T-snakes:Topology adaptive snakes.Medical Image Analysis,2000,4:73-91.

二级参考文献3

  • 1Vicent Caselles,Ron Kimmel,Guillermo Sapiro. Geodesic Active Contours[J] 1997,International Journal of Computer Vision(1):61~79
  • 2Vicent Caselles,Francine Catté,Tomeu Coll,Fran?oise Dibos. A geometric model for active contours in image processing[J] 1993,Numerische Mathematik(1):1~31
  • 3Michael Kass,Andrew Witkin,Demetri Terzopoulos. Snakes: Active contour models[J] 1988,International Journal of Computer Vision(4):321~331

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部