期刊文献+

直齿圆锥齿轮啮合过程数值模拟 被引量:10

Numerical value simulation on matching course of spur bevel gears
下载PDF
导出
摘要 利用大型有限元分析软件MSC.Marc,建立了直齿锥齿轮完整齿轮齿对啮合的三维有限元非线性接触分析模型。该模型可以同时实现运动的传递,基于该模型,在一个啮合周期内,对齿轮副进行了准静态啮合仿真模拟,并对数值模拟结果进行了分析,为齿轮修形提供了理论依据。 By the use of large scaled finite element analytical software MSC. Marc, a model was established for the 3D finite element nonlinear contact analysis for tooth-pairs engagement of the complete spur bevel gear. This model could also achieve the transfer of movement at the same time. Based on this model, a quasi-static meshing emulative simulation upon the gear pair was carried out during one period of engagement. And an analysis was carried out on the result of numerical value simulation, thus provided theoretical foundation for gear modification.
出处 《机械设计》 CSCD 北大核心 2006年第4期21-23,共3页 Journal of Machine Design
关键词 MSC.Marc直齿锥齿轮 准静态啮合 修形 NSC. Marc spur bevel gear quasi static mes- hing modification
  • 相关文献

参考文献3

二级参考文献18

  • 1李润方,黄昌华,陈大良.运转中啮合轮齿的三维应力应变数值分析及实验研究[J].机械工程学报,1994,30(2):38-44. 被引量:14
  • 2[1]Chen W H, Cheng T C. Boundary element analysis for contact problems with friction. Comput. Struct., 1992, 45(3):431~438
  • 3[2]Jerome M Solberg, Panayiotis Papadopoulos. A finite element method for contact/impact. Finite Element Method in Analysis Design, 1998, 30:297~311
  • 4[3]Chabrand P, Dubois F, Raous M. Various numerical methods for solving unilateral contact problems with friction. Math. Comput. Modeling, 1998, 28(4~8):97~108
  • 5[4]Refaat M H, Meguid S A. On the elastic solution of frictional contact problemsusing varitional inequalities. Int. J. Mech. Sci., 1994, 36:329~342
  • 6[5]El-Abbasi N, Meguid S A. Modeling frictional contact in shell structures usingvariational inequalities. Finite Elements in Analysis and Design, 1999, 33:317~334
  • 7[6]Ricardo E Barbosa, Jamshid Ghaboussi. Discrete finite element method for multiple deformable bodies. Finite Elements in Analysis and Design, 1990, 7:145~158
  • 8[7]Ch Glocker. Formulation of spatial contact situations in rigid multibody systems. Computer Methods in Applied Mechanics and Engineering, 1999, 177(3~4):199~214
  • 9[8]Nyashin Yu I, Chernopazov S A. A variational method for solving the contact problem in the theory of elasticity with friction. J. Appl. Mechs., 1997, 61(4):671~680
  • 10[9]Grzegorz Zboinski, Wieslaw Ostachowicz. A general FE algorithm for 3D incremental analysis of frictional contact problems of elastoplasticity. Finite Elements in Analysis and Design, 1997, 27:289~305

共引文献21

同被引文献40

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部