期刊文献+

非对称随机波动模型的参数估计及其实证 被引量:1

Parameter Estimation and Empirical Analysis of Asymmetric Stochastic Volatility Model
下载PDF
导出
摘要 研究非对称随机波动模型参数的贝叶斯估计问题,提出一种计算参数贝叶斯估计量的MCMC (Markov Chain Monte Carlo)算法。并利用此算法对中国股市波动的非对称现象进行了实证分析。 The paper discusses the Bayesian parameter estimation of asymmetric stochastic volatility model. A markov chain monte carlo algorithm is proposed, by which the Bayesian estimator of model parameters can be well computed. Then the asymmetry in Chinese stock market is analysed by this new algorithm.
作者 刘凤芹
出处 《工程数学学报》 CSCD 北大核心 2006年第2期273-278,共6页 Chinese Journal of Engineering Mathematics
关键词 非对称随机波动模型 MARKOV CHAIN MONTE Carlo(MCMC) 波动 asymmetric stochastic volatility model markov chain monte carlo (MCMC) volatility
  • 相关文献

参考文献6

  • 1Taylor S J. Modeling financial time series[M]. Chichester: John Wiley, 1986.
  • 2Harvey A C, N. Shephard estimation of an asymmetric stochastic volatility model for asset returns[J].Journal of Business and Economic Statistics, 1996,14:429-434.
  • 3Sandmann G, S J. Koopman estimation of stochastic volatility models via monte carlo maximum likelihood[J]. Journal of Econometrics, 1998,87:271-301.
  • 4Jacquier E, Poison N G, P E. Rossi Bayesian analysis of stochastic volatility models with fat-tails and correlated errors[M]. England: Elsevier Science, 2003.
  • 5Tierney L. Markov chains for exploring posterior distributions (with discussion)[J]. Annals of Statistics,1994,21:1701-1762.
  • 6Kim S, Shephard N, Chib S. Stochastic volatility: likelihood inference and comparison with ARCH models[J]. Review of Economic Studies, 1998,65:361-393.

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部