期刊文献+

一类非Lipschitz条件的BSDE解的存在唯一性 被引量:3

Existence and Uniqueness of Solutions on a Class of BSDEs with Non-Lipschitz Coefficient
下载PDF
导出
摘要 本文讨论了倒向随机微分方程在f(t,y,z)满足:(?)N>0,(?)CN0,LN>0,使得对任意y1,y2∈Rn,z1,z2∈Rn×d 当0≤|y1|,|y2|,|z1|,|z2|≤N时,有 |f,(s,y1,z1)-f(s,y2,z2)|2≤CNK(t,|y1-y2|2)+LN|z1-z2|2 的非Lipschitz条件时解的存在性和唯一性。2003年,王赢、王向荣证明了一类倒向随机微分方程解的存在唯一性,我们使用函数逼近法,得到一列满足王赢,王向荣文中条件的倒向随机微分方程,因而每个方程均有唯一解,然后通过取极限的方法证明我们所讨论的方程有唯一解(Y Z),从而推广了他们的结果。 We study the existence and uniqueness of solutions on the following BSDEs: Yt=ξ+1∫tf(s,Ys,Zs)ds-1∫tZsdWs where f(t,y,z) satisfies non-Lipschitz condition: νN〉0,ЭCN〉0,LN〉0,when yl,y2 ∈R^n,z1,z2∈R^n×d and 0≤|y1|,|y2|,|z1|,|z2|≤N, |f(s,y1,z1)-f(s,y2,z2)|^2≤CNK(t,|y1-y2|^2)+LN|z1-z2|^2 In 2003, Wang Ying and Wang Xiangrong proved existence and uniqueness of the locally and globally adapted solutions on a class of BSDEs. We extend their results. Firstly, we construct a serial of BSDEs satisfying those conditions in their paper, hence each equation has a unique solution. Finally, we prove that our equation has a unique solution by taking a limit on the equations serial.
作者 冉启康
出处 《工程数学学报》 CSCD 北大核心 2006年第2期286-292,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10371021).
关键词 倒向随机微分方程 ITO公式 GRONWALL不等式 存在唯一性 backward stochastic differential equations Ito formula Gronwall inequality existence and uniqueness
  • 相关文献

参考文献4

二级参考文献3

共引文献25

同被引文献22

  • 1孙信秀.非Lipschitz条件下倒向随机微分方程的比较定理(英文)[J].徐州师范大学学报(自然科学版),2005,23(4):37-40. 被引量:1
  • 2Pardoux E,Peng S. Backward doubly stochastic differential equations and systems of quasilinear SPDEs [J]. Probab Theory Related Fields, 1994,98 (2) : 209-227.
  • 3Peng S. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations [J]. Stoch Reports, 1991,37 (1) : 61-74.
  • 4Mao X. Adapted solution of backward stochastic differential equation with non-Lipschitz coefficients[J]. Stochastic Processes and their Applications, 1995,58 : 281-292.
  • 5Lepeltier J P. Martin J San. Backward stochastic differential equations with continuous coefficient[J]. Statistics and Probability Letters, 1997,32 (1): 425-430.
  • 6Jia G. A uniqueness theorem for the solution of backward stochastic differential equations[J]. C R Acad Sci Paris Ser I, 2008,346:439-444.
  • 7Peng S. Backward stochastic differential equations and applications to optimal control [J ]. Appl Math Optim, 1993,27(2) : 125-144.
  • 8Shi Y,Gu Y, Liu K. Comparison theorem of backward stochastic doubly differential equation and application [J].Stoch Anal Appl,2005,23(1) : 97-110.
  • 9Matous.si A, Scheutzow M. PDES driven by nonliniear noise and BDSDEs driven by nonliniear noise and BDSDEs[J]. Theoretical Probability, 2002,15 (1) : 1-39.
  • 10龚光鲁.随机微分方程引论[M].2版.北京:北京大学出版社,2000:88-91.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部