摘要
本文讨论了存存线性红利界限的带随机干扰的经典风险模型,给出了破产概率的一个上界,并证明了生存概率及红利付款的期望现值分别满足一个积分-微分方程。最后给出了索赔额服从指数分布时生存概率及红利付款的期望现值的确切表达式。
This paper discusses the classical risk model perturbed by diffusion in the presence of a linear dividend barrier. An upper bound of ruin probability is given. Furthermore, we show that the survival probability and the expectation of the discounted dividend payments fulfill integro-differential equations, respectively. Finally, the explicit formulae for them are derived when the claim size is exponentially distributed.
出处
《工程数学学报》
CSCD
北大核心
2006年第2期319-323,共5页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(10471076)
山东省自然科学基金(2004A06)
曲阜师范大学科研基金.
关键词
破产概率
线性红利界限
积分-微分方程
红利付款的期望现值
ruin probability
linear dividend barrier
integro-differential equation
the expectation of the discounted dividend payments