期刊文献+

演化级联神经网络对脑电信号分类的研究

Research on EEG Classification with Evolving Cascade Neural Networks
下载PDF
导出
摘要 为了对不同思维状态下的脑电信号进行正确分类,克服神经网络分类器受噪声和冗余特征的影响出现的过拟合,提出了一种新的演化级联神经网络的学习算法。算法通过计算神经元对确认集的适应函数值,以逐步更新神经元对训练集的连接权重。适应函数值取决于被训练神经元的泛化能力,它随着神经元分类准确度的增加而降低。此网络由一个输入节点开始学习,随着演化增加新的输入神经元及新的隐神经元,最终经训练的网络含有最小数目的神经元及连接。此方法应用于区分两种思维状态下的脑电信号,经训练的网络对测试段的分类正确率为83.1%,与标准的BP网络进行比较,演化级联神经网络显示了较好的分类能力。 To correctly classify EEG with different mental tasks, a new learning algorithm for Evolving Cascade Neural Networks (ECNNs) is described to avoid over-fitting of a neural network due to noise and redundant features. The learning algorithm calculates the value of a fitness function on validate set and accordingly updates the connection weights on training set. The learning algorithm uses the regularity criterion for selecting the neurons with relevant connection. If the value Cr calculated for the rth neuron is less than the value Cr-1 calculated for the previous (r-1) neuron, the features that feed the rth neuron are relevant, else they are irrelevant. An ECNN starts to learn with one input node and then, adding new inputs as well as new hidden neurons, evolves it. The trained ECNN has a nearly minimal number of input and hidden neurons as well as connections. The algorithm is applied to classify EEG with two mental tasks. The trained ECNN has correctly classified 83.1% of the testing segments. It shows a better result, compared with a standard BP network.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2006年第2期262-265,共4页 Journal of Biomedical Engineering
关键词 级联结构 脑电 演化 过拟合 特征提取 Cascade architecture Electroencephalogram Evolving Over-fitting Feature selection
  • 相关文献

参考文献12

  • 1Charles W.Anderson,Zlatko Sijjeri.Classification of EEG signals from four subjects during five mental tasks.Scientific Programming,1995; 4(3):171.
  • 2Tetsuya Hoya,Gen Hori,Hovagim Bakardjian,et al.Classification of single trial EEG signals by a combined principal + independent component analysis and probabilistic neural network approach.4^th International Symposition on Independent Component Analysis and Blind Signal Separation (ICA2003),2003; 197.
  • 3Jose del R.Millán,Josep Mournio,Fabio Babiloni,et al.Local neural classifier for EEG-based recognition of mental tasks.IEEE-INNS-ENNS International Joint Conference on Neural Networks,2000;156.
  • 4Lu Bao-Liang,Jong Shin,and Michinori Ichikawa.Fast classification of high-dimensional EEG signals using min-max modular neural network.RIKEN Review,2001,No.40:Focused on High Performance Computing in RIKEN,2000; 58.
  • 5Cios KJ and Liu N.A machine method for generation of neural network architecture:A continues ID3 algorithm.IEEE Transactions on Neural Networks,1992; 3:280.
  • 6Jang J.and Honovar V.Feature subset selection using a genetic algorithm.In:Proceedings of the Genetic Programming,Standford,1997; 67.
  • 7Tetko IV and Villa AE.An enhancement of generalization ability in cascade-correlation algorithm by avoidance of over-fitting problem.Neural Processing Letters,1997; 1:43.
  • 8Madala HR.and Ivakhnenko AG.Inductive learning algorithms for complex system modeling.CRC Press Inc,Boca Raton,1994; 78.
  • 9Vitaly Schetinin.A learning algorithm for evolving cascade neural networks.Neural Processing Letters,2003; 17:21.
  • 10Kay SM.Modern spectral estimation:theory and application.Prentice-Hall,1988; 50-60.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部