期刊文献+

功能梯度材料平面断裂中的一系列偏微分方程边值问题 被引量:1

A Series of Boundary Value Problem of Partial Differential Equation on Functionally Graded Materials Plane Fracture
下载PDF
导出
摘要 当弹性模量按任意函数形式连续变化时,将各向同性、正交异性功能梯度材料平面断裂问题的Ⅰ型、Ⅱ型、Ⅰ+Ⅱ型裂纹的探讨归结为求解两类(6个)偏微分方程的边值问题。在此基础上进一步考虑当弹性模量按指数函数形式或按幂函数形式连续变化时,相应的Ⅰ型、Ⅱ型、Ⅰ+Ⅱ型裂纹的探讨可归结为求解另4类(12个)较为简单的偏微分方程边值问题。 The search for plane fracture problems of functionally graded materials with the elastic modulus variation represented in the arbitrary function form can be classified as solving two classes of boundary value problems of simple partial differential equation. Based on this, the search for plane fracture problems of functionally graded materials with the elastic modulus variation reprdsented in the exponential function or power function form can be classified as solving four classes of boundary value problems of simple partial differential equation.
机构地区 太原科技大学
出处 《太原科技大学学报》 2006年第1期33-38,共6页 Journal of Taiyuan University of Science and Technology
关键词 偏微分方程 边值问题 功能梯度材料 断裂 partial differential equation, boundary value problem, functionally graded materials ,fracture
  • 相关文献

参考文献4

  • 1DELALE F,ERDOGAN F.The crack problem for a nonhomogeneous plane[J].ASME Journal of Applied Mechanics,1983,50:609-614.
  • 2ERDOGAN F,WU B H.The surface crack problem for a plate with functionally graded properies[J].ASME Journal of Applied Mechanics,1997,64:449-456.
  • 3KONDA N,ERDOGAN F.The mixed mode crack problem in a nonhomogeneous elastic plane[J].Engineering Fracture Mechanics,1994,47:533-545.
  • 4SIH G C,CHEN E P.Cracks in composite materials.Mechanics of Fracture 6[M].The Hague:Martinus Nijhoff Publishers,1981.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部