期刊文献+

基于PEG算法的多进制LDPC码的设计与仿真 被引量:3

Design and simulations of LDPC codes on GF(q) based on PEG algorithm
下载PDF
导出
摘要 引入PEG算法来构造多进制LDPC码的校验矩阵H,译码时采用傅立叶变换实现了简化译码。仿真结果表明:中短帧情况下,由PEG因子图编码的四进制LDPC码的性能明显好于随机编码的四进制LDPC码的性能。在相似复杂度下,四进制LDPC码的性能略好于二进制LDPC码,所以,根据PEG原理构造的四进制LDPC码在未来数字通信系统中具有重要的实用价值。 In this paper, the PEG (Progressive Edge Growth) algorithm is introduced into the design of checkout matrix of LDPC codes and the Fourier transform (FT) decoding algorithm is also used. Simulation results show that the performance of LDPC codes on GF(4), based on PEG Tanner graphs, is apparently better than that based on random graphs at the short and medium block lengths. And LDPC codes on GF(4) outperform that on GF(2) slightly with analogous complexity. Obviously based on PEG principle, LDPC codes on GF(4) are of greater practical value in future digital communication systems.
出处 《重庆邮电学院学报(自然科学版)》 2006年第2期175-177,共3页 Journal of Chongqing University of Posts and Telecommunications(Natural Sciences Edition)
基金 国家自然科学基金项目(60272005) 教育部新世纪优秀人才支持计划(NCET-04-0601)
关键词 多进制LDPC码 PEG算法 高斯消去 傅立叶变换 LDPC codes on GF(q) PEG algorithm Gaussian elimination Fourier transform
  • 相关文献

参考文献9

  • 1GALLAGER R G.Low-Density Parity Chech Codes[J].IRE Trans.Info.Theory,1962,IT-8(1):1-28.
  • 2MACKAY D J C,NEAL R M.Near Shannon limit performance of low densiy parity check codes[J].Electronics Letters,1996,32(8):1645-1646.
  • 3MACKAY D J C.Good error-correcting codes based on very sparse matrices[J].IEEE Trans.Inform.Theory.1999,45(2):399-431.
  • 4CHUNG S Y,FORNEY G D,RICHARDSON T J,et al.On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit[J].IEEE Commun.Lett.,2001,5(2):58-60.
  • 5HU X Y,ELEFTHERIOU E,ARNOLD D M.Progressive edge-growth Tanner graphs[EB/OL].(2001-12-18)[ 2005-02-27 ].http://ieeexplore.ieee.org/ie15/7633/20833/00965567.pdf.
  • 6DAVEY M,MACKAY D J C.Low-Density Parity Check Codes over GF(q)[J].IEEE Commun.Lett.,1998,2(6):165-167.
  • 7李祥明,SOLEYMANIM R,LODGE J,GUINAND P S.采用基于GF(q)的LDPC编码实现带宽有效传输及编码设计(英文)[J].重庆邮电学院学报(自然科学版),2005,17(2):138-143. 被引量:1
  • 8SONG Hong-xin,CRUZ J R.Reduced-complexity Decoding of q-ary LDPC Codes for Magnetic Recording[J ].IEEE Trans.Mang.,2003,39(3):1081-1087.
  • 9RICHARDSON T,URBANKE R.The capacity of low-density parity check codes under message-passing decoding[J ].IEEE Transactions on Information Theory,2001,47(2):599-618.

二级参考文献12

  • 1AVRIEL M. Nonlinear programming: analysis and methods[M]. Prentice-Hall, 1976.
  • 2PAVIANI D A,HIMMELBLAU D M. Constrained non-linear optimization by heuristic programming [J]. Journal of the Operations Research Society of America, 1969,17: 872-882.
  • 3GERAMITA A,SEBERRY J. Orthogonal designs:quadratic forms and Hadamard matrices[M]. New York, Marcel Dekker,1979.
  • 4GALLAGER R G. Low-density parity-check codes [M]. MIT Press, Cambridge,Mass,1963.
  • 5DAVEY M C,MACKAY D J C. Low density parity check codes over GF(q)[J]. IEEE Communications Letters,1998, 2(6) :165-167.
  • 6DAVEY M.C. Error-correction using low-density parity-check codes[D]. Ph. D Thesis, University of Cambridge.
  • 7MACKAY D J C. Good error correcting codes based on very sparse matrices [J]. IEEE Trans. Inform.Theory, 1999,IT-45; 399-431.
  • 8KSCHISCHANG F R,FREY B J,LOELIGER H A.Factor graphs and the sum-product algorithm [J].IEEE Trans. Inform. Theory,2001,IT-47:498-519.
  • 9LUBY M G,MITZENMACHER M,SHOKROLLAHI M A,et al. Improved low-density parity-check codes using irregular graphs [J]. IEEE Trans. Inform.Theory, 2001 ,IT-47: 585-598.
  • 10RICHARDSON T J. The capacity of low-density parity check codes under message-passing decoding[J]. IEEE Trans. Inform. Theory, 2001,IT-47 : 599-618.

同被引文献18

  • 1[1]GALLAGER R G.Low-Density Parity Cheek Codes[J].IRE Trans.Info.Theory,1962,8(1):1-28.
  • 2[2]MACKAY J C,NEAL R M.Near Shannon limit perform-ance of low density parity check codes[J].Electron.lett,1996,32(8):1645-1646.
  • 3[3]DAVEY M C,MACKAY D J C.Low-Density Parity Check Codes over GF (q)[J].IEEE Commun.lett,1998,2(6):165-167.
  • 4[4]FORNEY G D.Concatenated Codes[M].Cambridge:M.I.T.press,1966.
  • 5[5]BEHAIRY H,CHANG S C.Parallel Concatenated Gallag-er codes[J].Electron.lett,2000,1(24):2025-2026.
  • 6[6]HU X,ELEFTHERIOU E,ARNOLD D M,et al.Efficient implementations of the sum-product algorithm for deco-ding LDPC codes[C]//Proc.IEEE GLOBECOM 2001,SanAntonio,USA,Nov,2001,SanAntonio:[s.n.],2001:1036-1036E.
  • 7[8]CHEN Junbin,WANG Lin,LI Yong.Performance compar-ison between non-binary LDPC Codes and Reed-Solomon codes over noise bursts channels[C]//Proc.IEEE IC-CCAS 2005,Hong Kong,China,May,2005,Hong Kong:[s.n.],2005:1-4.
  • 8[9]BEHAIRY H,CHANG Shih-Chun.On the design,simula-tion and analysis of parallel concatenated Gallager codes[C]//Proc.IEEE ICC New York,USA,April,2002,New York:[s.n.],2002,3:1850-1854.
  • 9[1]GALLAGER R G.Low-Density Parity Chech Codes[J].IRE Trans.Info.Theory,1962,8(1):1-28.
  • 10[2]MACKAY D,NEAL R.Near Shannon limit performance of low density parity check codes[J].Electronics Letters,1996,32(18):1645-1661.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部