摘要
以Breit-Pauli哈密顿的球张量形式为基础,借助不可约张量理论,建立了计算多电子原子能量的相对论修正的一种解析理论形式,导出了多电子原子相对论修正项(包括相对论质量修正项、单体和双体达尔文修正项、自旋-自旋接触相互作用项和轨道-轨道相互作用项)在斯莱特表象中的矩阵元的解析表达式,完成了所有角向积分和自旋求和计算.利用所建立的理论,对类锂体系(1s)2(2p)2P态能量的相对论修正进行了具体计算.
Based on the tensor expression for the Breit-Pauli Hamiltonian, and with the aid of irredudble tensor theory, an analytic formulism for calculating the relativistic corrections to the non-relativistic energies of many-electron atoms has been established. Matrix elements in sets of Slater functions of the relativistic correction operators, which include mass correction term, one- and two-body Darwin correction terms, spin-spin contact interaction term and orbit-orbit interaction term, have been derived explicitly. All the angular integrations and spin sum have been worked out by using irreducible tensor theory. The theory is applied to the (1s)^2(2p)^2P state of Lithium-like atoms.
出处
《原子与分子物理学报》
CAS
CSCD
北大核心
2006年第2期323-330,共8页
Journal of Atomic and Molecular Physics
基金
安徽省教育厅自然科学基金(2003KJ035ZD)
安徽省教育厅高校省学术带头人后备人选科学研究基金(2002HBL05)
安徽省原子与分子物理重点学科建设基金(2002ZDXK)