期刊文献+

局部形状可调的三角多项式插值曲线 被引量:4

Local Shape-Modifying Trigonometric Polynomial Interpolation Curves
下载PDF
导出
摘要 对于给定的有序插值点列,给出了构造一类三角多项式插值曲线的方法。三角多项式曲线的控制点直接由插值点列计算产生,避免了求解方程组。所构造的插值曲线可作局部形状修改且具有G2m-1连续性。 For a set of ordered planar data points {Vi }^ni=1,a method of constructing cubic trigonometric polynomial interpolation curves is presented,The control points of the trigonometric polynomial curves are computed by a set of the G^2m-1 points {Vi}^i=1 ,there is no need to solve a linear systems of a set of vector equations.The constructed curve is and can be modified locally.
作者 龙媛 韩旭里
出处 《计算机工程与应用》 CSCD 北大核心 2006年第9期70-72,共3页 Computer Engineering and Applications
关键词 CAGD 三角多项式曲线 插值 CAGD,trigonometric polynomial curve,interpolation
  • 相关文献

参考文献10

二级参考文献20

  • 1王西永,汪嘉业.对Nira的四点插入生成曲线方法的进一步改进[J].计算机辅助设计与图形学学报,1993,5(4):241-246. 被引量:4
  • 2谭建荣.均匀三次B-spline反求的一种新方法[J].工程图学学报,1988,(2):59-67.
  • 3[1]Hoschek J, Lasser D. Fundamentals of computer aided geometric design[M]. Wellesley, MA: A. K. Peters, 1993.
  • 4[2]Barsky B A. Computer graphics and geometric modeling using Beta-spline[M]. Heidelberg: Springer-Verlag, 1988.
  • 5[3]Gregory J A, Sarfraz M. A rational cubic spline with tension [J]. Computer Aided Geometric Design, 1990,7 (9): 1~13.
  • 6[4]Joe B. Multiple-knot and rational cubic Beta-spline[J]. ACM Trans. Graph. 1989,8:100~120.
  • 7[5]Boehm W. Rational geometric splines [J]. Computer Aided Geometric Design, 1990,7(4) :67~77.
  • 8[6]Goodman T N T. Constructing piecewise rational curves with Frenet frame continuity[J]. Computer Aided Geometric Design,1990,7(7) :15~31.
  • 9[7]Joe B. Quartic beta-splines[J]. ACM Trans. Graph. , 1990,9:301~337.
  • 10[8]Schoenberg I J. On trigonometric spline interpolation [J]. J.Math. Mech., 1964,13:795~825.

共引文献75

同被引文献16

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部