期刊文献+

退火期望最大化算法A-EM 被引量:2

An Annealing Expectation Maximization Algorithm
下载PDF
导出
摘要 使用EM算法训练随机多层前馈网具有低开销、易于实现和全局收敛的特点,在EM算法的基础上提出了一种训练随机多层前馈网络的新方法AEM.AEM算法利用热力学系统的最大熵原理计算网络中隐变量的条件概率,借鉴退火过程,引入温度参数,减小了初始参数值对最终结果的影响.该算法既保持了原EM算法的优点,又有利于训练结果收敛到全局极小.从数学角度证明了该算法的收敛性,同时,实验也证明了该算法的正确性和有效性. Training the stochastic feedforward neural network with expectation maximization (EM) algorithm has many merits such as reliable global convergence, low cost per iteration and easy programming. A new algorithm named A-EM (annealing-expectation maximization) based on the EM algorithm is proposed for training the stochastic feedforward neural network. The A-EM algorithm computes the condition probability of the hidden variable in the network system through the maximum entropy principle of the thermodynamics. It can reduce the influence of the initial value on the final resolution by simulating the annealing process and introducing the temperature parameter. This algorithm can not only keep the merits of the original EM, but also facilitate the results converge to the global minimum. The convergence of the algorithm is proved and its correctness and validity is verified by experiments.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第4期654-660,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60373029) 教育部博士点基金项目(20020004020) 国家发展和改革委员会CNGI产业化及应用实验项目(CNGI04122A)
关键词 随机前馈神经网络 期望最大化算法 最大熵 退火 stochastic feedforward neural network expectation maximization (EM) algorithm maximum entropy annealing
  • 相关文献

参考文献7

  • 1Z.Ghahramani,M.I.Jordan.Supervised learning from incomplete data via an EM approach.In:Proc.Advances in Neural Information Processing Systems.San Francisco:Morgan Kaufmann,1994.120~127
  • 2S.Amari.Information geometry of the EM and the em algorithm for neural network.Neural Network,1995,8(9):1379~1408
  • 3杨广文,李晓明,王义和,郑纬民,王鼎兴.确定性退火技术[J].计算机学报,1998,21(8):765-768. 被引量:19
  • 4K.Rose,E.Gurewitz,G.C.Fox.Vector quantization by deterministic annealing.IEEE Trans.Information Theory,1992,38(4):1249~1257
  • 5N.Ueda,R.Nakano.Deterministic annealing EM algorithm.Neural Networks,1998,11(2):271~282
  • 6陈宝林.最优化理论与算法[M].北京:清华大学出版社,2000..
  • 7M.I.Jordan,L.Xu.Convergence results for the EM approach to mixtures of experts architectures.Neural Networks,1995,8 (9):1409~1431

共引文献30

同被引文献30

  • 1李晓峰,徐玖平,王荫清,贺昌政.BP人工神经网络自适应学习算法的建立及其应用[J].系统工程理论与实践,2004,24(5):1-8. 被引量:76
  • 2陈天平.神经网络及其在系统识别应用中的逼近问题[J].中国科学(A辑),1994,24(1):1-7. 被引量:50
  • 3唐万梅.BP神经网络网络结构优化问题的研究[J].系统工程理论与实践,2005,25(10):95-100. 被引量:73
  • 4邹昊飞,夏国平,杨方廷.基于两阶段优化算法的神经网络预测模型[J].管理科学学报,2006,9(5):28-35. 被引量:11
  • 5Ghahr amani, M. JordanSupervised learning from incomplete da- ta via an EM approachl In Pro~l Advances in Neural Information Process- ing Systems[ M]. San Francisco,1994.
  • 6Kurt Homik, Maxwell Stinchcombe, Halbert White. Universal approy,/matlon of an unknown mapping and its derivatives using multilayer feed forward networks~ M]. Neural Networks, U~A ,1990.
  • 7J. L. Castro, C..IT. Mantas, J. M. Benftez. Neural networks with a continuous squashing function in the output are universal approximators [ M]. Neural Networks ,USA ,2000.
  • 8G. G. Towell. Symbolic knowledge and neural networks : Inser- tion refinement and extraction. Ph. D dissertation[ M]. USA : University of Wisconsin, 1991.
  • 9I. K. Sethil. Neural implementation of tree classifier IEEE Trans Systems[ J ]. Man and Cybernetics, 1995 (8).
  • 10G. Deffuant. Neural units cruitment algorithm for generation of decision trees int. Joint Cortf[ M 1. Neural Network, San Diego, 1990.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部