期刊文献+

使用BP神经网络缓解协同过滤推荐算法的稀疏性问题 被引量:85

Employing BP Neural Networks to Alleviate the Sparsity Issue in Collaborative Filtering Recommendation Algorithms
下载PDF
导出
摘要 推荐质量低是协同过滤推荐技术面临的主要难题之一.数据集的极端稀疏是造成推荐质量低的主要原因之一.常见的降维法和智能Agent法虽然某种程度上能缓解这个问题,但会导致信息损失和适应性等问题.设计了一个新的协同过滤算法,根据用户评分向量交集大小选择候选最近邻居集,采用BP神经网络预测用户对项的评分,减小候选最近邻数据集的稀疏性.该算法避免了降维法和智能Agent法的缺点,而且实验结果表明,该方法能提高预测值的准确度,从而提高协同过滤推荐系统的推荐质量. Poor recommendation quality is one major challenge in collaborative filtering recommender systems. Sparsity of source data sets is one major reason causing the poor quality. The popular singular value decomposition techniques and the agent-based methods to a certain extent are able to alleviate this issue. But at the same time they also introduce new problems. To reduce sparsity, a novel collaborative filtering algorithm is designed, which firstly selects users whose non-null ratings intersect the most as candidates of nearest neighbors, and then builds up backpropagation neural networks to predict values of the null ratings in the candidates. Experiments are conducted based on standard dataset. The results show that this methodology is able to increase the accuracy of the predicted values, resulting in improving recommendation quality of the collaborative filtering recommendation algorithm.
作者 张锋 常会友
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第4期667-672,共6页 Journal of Computer Research and Development
基金 广东省自然科学基金重点项目(05100302)
关键词 电子商务 数据挖掘 推荐系统 协同过滤 BP神经网络 算法 electronic commerce data mining recommender system collaborative filtering backpropagation neural network algorithm
  • 相关文献

参考文献12

  • 1S.Ansari,R.Kohavi,L.Mason,et al.Integrating E-commerce and data mining:Architecture and challenges.In:Proc.2001 IEEE Int'l Conf.Data Mining.Los Alamitos,CA:IEEE Computer Society Press,2001.27~34
  • 2B.Sarwar,G.Karypis,J.Konstan,et al.Analysis of recommendation algorithms for E-commerce.In:Proc.2nd ACM Conf.Electronic Commerce.New York:ACM Press,2000.158~167
  • 3B.Sarwar,G.Karypis,J.Riedl.Item-based collaborative filtering recommendation algorithms.In:Proc.10th Int'l World Wide Web Conference.New York:ACM Press,2001.285~295
  • 4J.Breese,D.Hecherman,C.Kadie.Empirical analysis of predictive algorithms for collaborative filtering.In:Proc.14th Conf.Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann,1998.43~52.
  • 5B.M.Sarwar,G.Karypis,J.A.Konstan,et al.Application of dimensionality reduction in recommender system -A case study.In:Proc.ACM WebKDD 2000 Web Mining for E-Commerce Workshop.New York:ACM Press,2000.82~90
  • 6C.C.Aggarwal.On the effects of dimensionality reduction on high dimensional similarity search.In:Proc.12th ACM SIGMOD-SIGACT-SIGART symposium on Principles of Database Systems.New York:ACM Press,2001.256~266
  • 7B.Sarwar,J.Konstan,A.Borchers,et al.Using filtering agents to improve prediction quality in the groupLens research collaborative filtering system.In:Proc.ACM Conf.Computer Supported Cooperative Work (CSCW).New York:ACM Press,1998.345~354
  • 8N.Good,J.B.Schafer,J.A.Konstan,et al.Combining collaborative filtering with personal agents for better recommendations.In:Proc.16th National Conf.Artificial Intelligence (AAAI-99).Menlo Park,CA:AAAI/MIT Press,1999.439~446
  • 9K.Goldberg,T.Roeder,D.Gupta,et al.Eigentaste:A constant time collaborative filtering algorithm.Information Retrieval,2001,4(1):133~151
  • 10S.H.S.Chee,J Han,K.Wang.RecTree:An efficient collaborative filtering method.In:Lecture Notes in Computer Science 2114.Berlin:Springer,2001.141~151

二级参考文献1

共引文献139

同被引文献872

引证文献85

二级引证文献903

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部