期刊文献+

基于极大模糊熵原理的模糊产生式规则中的权重获取方法研究 被引量:7

Research on Learning Weights of Fuzzy Production Rules Based on Maximum Fuzzy Entropy
下载PDF
导出
摘要 模糊产生式规则(IFTHEN规则)是不确定性知识表示的一种最基本的最常用的形式,在模糊规则中引入权重,能增强模糊规则对待分类示例的泛化能力.模糊产生式规则的一项重要研究工作就是权重如何获取.目前常用的权重获取准则是依据于训练精度的提高,这种方法的明显不足就是会引起过度拟合.因此,提出了一种新的基于极大模糊熵原理的权重获取准则.在保证不降低训练精度的前提下,调整权重来极大化训练集的模糊熵,能有效提高测试精度.新的权重获取策略有效解决了过度拟合问题,同时提高了测试精度. Fuzzy production rules (FPRs) is a fundamental and important way of imprecise knowledge representation. For enhancing generalization capability of FPRs for the given examples, the concept of weight is introduced into FPRs. So it is necessary to explore specific criterion for determining these weight values. Generally speaking, the usual criterion of the weight values adjustment, which is based only on improving training accuracy, often results in an over-fitting. This paper aims to accomplish this task by using a new method based on the well-known maximum fuzzy entropy principle. In the case that the training accuracy does not decrease, the testing accuracy will increase with the value of fuzzy entropy of training set. At the same time, adjusting the weight values can change the fuzzy entropy of training set. Therefore, this new criterion can avoid the drawback of over-fitting and can improve the testing accuracy.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第4期673-678,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60473195)
关键词 不确定性推理 模糊产生规则 权重获取 模糊熵 极大模糊熵原理 approximate reasoning fuzzy production rules weight acquisition fuzzy entropy maximum fuzzy entropy principle
  • 相关文献

参考文献8

  • 1D.S.Yeung,E.C.C.Tsang.Weighted fuzzy production rules.Fuzzy Sets and Systems,1997,88(3):299~313
  • 2Tom M.Mitchell.Machine learning.New York:McGraw-Hill,2003
  • 3Yuan Yufei,Shaw Michael.Induction of fuzzy decision trees.Fuzzy Sets and Systems,1995,69(2):125~139
  • 4De Luca,S.Termin.A definition of nonprobabilistic entropy in the setting of fuzzy sets theory.Information and Control,1972,20(4):301~312
  • 5Xuecheng Liu.Entropy,distance measure and similarity measure of fuzzy sets and their relations.Fuzzy Sets and Systems,1992,52(3):305~318
  • 6Xiaolong Wang,Jin Zhao.Chinese pos tagging based on maximum entropy model.The 1st Int'l Conf.Machine Learning and Cybernetics,Beijing,2002
  • 7UCI repository of machine learning databases and domain theories.ftp://ftp.ics.uci.edu/pub/mlearn/databases/,2005
  • 8S.Abe,Ming-Shong Lan.A method for fuzzy rules extraction directly from numerical data and its application to pattern classification.IEEE Trans.Fuzzy Systems,1995,3(1):18~26

同被引文献41

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部