期刊文献+

支持向量回归用于氨基酸描述符在肽QSAR建模中的性能评价 被引量:6

Evaluation of Predict Performanceof Five Amino Acid Descriptors in Peptide QSAR by Support Vector Regression
下载PDF
导出
摘要 采用支持向量回归方法用3个数据集来评价z-scales、c-scales、ISA-ECI、MS-WHIM、PRIN等5个氨基酸描述符在肽QSAR支持向量回归模型构建中的性能并对核函数进行选择,采用留一法交叉检验的结果显示径向基核函数要好于多项式核函数和线性核函数;在以径向基核函数的支持向量回归模型中表明z-scales的预测准确度要略优于其它描述符,且在同一描述符的情况下SVR的预测效果要好于其它线性方法,说明SVR在肽QSAR模型构建中是一个可行的方法. Evaluation of predict performance of five amino add descriptors (z-scales, e-scales, ISA-ECI, MS- WHIM, PRIN) in peptide QSAR(Quamitative structure-activity relationships) with three dataset by support vector regression(SVR) is made in the artiele, and RBF is selected as kernel function. Using 'leave-one-out' ert^-validation (LOO-CV), we suppose that radial basis function (RBF) is better than polynomial function and linear function, as long as our model is considered. Predicting aeeuraey of z-scales is slightly better than the other descriptors in SVR with RBF. Prediction capability of SVR in the same descriptor is better than other linear methods. Therefore. SVR is assumed to be a feasible method in peptide OSAR model.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期396-402,共7页 Journal of Sichuan University(Natural Science Edition)
关键词 定量构效关系 核函数 支持向量回归 性能评价 amino acid descriptor peptide QSAR kernel function support vectors regression
  • 相关文献

参考文献20

  • 1Hellberg S,Sjostroem M,Skagerberg B,et al.Peptide quantitative structure-activity re lationships,a multivariate approach[J].J.Med Chem,1987,30:1126.
  • 2丁俊杰,丁晓琴,赵立峰,陈冀胜.多肽定量构效关系与分子设计[J].化学进展,2005,17(1):130-136. 被引量:9
  • 3Cocchi M,Johansson E.Amino acids characterization by GRID and multivariate data analysis[J].Quant Struct-Act.Relat,1993,12:1.
  • 4Collantes E R,Dunn W J Ⅲ.Amino acids side chain descriptors for quantitative struc ture-activity relationship studies of peptide analogues[J].J.Med.Chem,1995,3:2705.
  • 5Zaliani A,Gancia E.MS-WHIM scores for amino ac ids:a new 3D-descriptor for peptide QSAR and QSPR studies[J].J.Chem.Inf.Comput.Sci,1999,39:525.
  • 6Spyridon V,Boojala V B R,Yiannis K.Prediction of distant residue contacts with the use of evolutionary information[J].Proteins:structure,function,and bioinformatics,2005,58:935.
  • 7丁俊杰,丁晓琴,赵立峰,陈冀胜.新型三维氨基酸结构描述符的研究及其在多肽QSAR中的应用[J].药学学报,2005,40(4):340-346. 被引量:23
  • 8Shushen Liu,Chunsheng Yin,Shaoxi,et al,A Novel MHDV Descriptor for Dipeptide QSAR Studies[J].Journal of the Chinese Chemical Society,2001,48:253.
  • 9Shengshi Zhiliang Li,Bianhong Fua,Yuanqiang Wang,et al.On Structural Parameterization and Molecular Modeling of Peptide Analogues by Molecular Electronegativity edge Vector (VMEE):Estimation and Prediction for Biological Activity of Dipeptides[J].Journal of the Chinese Chemical Society,2001,48:937.
  • 10Liu Shu-Shen,Yin Chun-sheng,Wang Lian-Sheng.Combined MEDV-GA-MLR Method for QSAR of Three Panels of Steroid,Dipeptides,and COX-2 Inhibitors[J].J.chem.Inf.compu.sci,2002,42:749.

二级参考文献80

  • 1王文兴.中国酸雨成因研究[J].中国环境科学,1994,14(5):323-329. 被引量:212
  • 2姜微,罗晓虹,姜林,印家健,李梦龙.IEA-PPR用于降水的pH值预测模型构建[J].化学研究与应用,2005,17(4):545-547. 被引量:7
  • 3祁正兴,印家健,陆敏春,李梦龙.多环芳烃及其衍生物致癌性的支持向量机预测模型[J].四川大学学报(自然科学版),2005,42(6):1213-1218. 被引量:7
  • 4王连生 汪小江 等.多环芳烃的分配系数与双区理论[J].环境科学学报,1987,7(2):240-244.
  • 5Harvey R G.Polycyclic aromatic hydrocarbons chemistry and carcinogencity[M].Cambridge:Cambridge University press,1991:11-25.
  • 6Pullman A,Pullman B.Electronic structure and carcinogenic activity of aromatic molecules;new developments[J].Adv cancer res,1955,(3):117-159.
  • 7Jerina D M,Lehr R E.In:Microsomes and Drug Oxidations (Ullrich V,et al) [M].Oxford:Pergam on Press,1977:709-720.
  • 8戴乾圆.化学致癌剂及化学致癌机理的研究[J].中国科学,1979,(10):964-978.
  • 9Vapnic V N.统计学习理论[M].北京:电子工业出版社,2004:365-373.
  • 10Haykin S.Neural networks:a comprehensive foundation[M].New Jersey:Prentice-Hall,1999:318-347.

共引文献104

同被引文献51

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部