期刊文献+

磷酸钙/纤维蛋白胶复合支架材料的结构及力学性能分析 被引量:20

Structural and mechanical properties of the compound scaffold of calcium phosphate cement and fibrin glue
下载PDF
导出
摘要 用可吸收磷酸钙骨水泥和纤维蛋白胶按一定比例体外构建复合支架材料,通过XRD、SEM、抗压实验和空隙率测试等方法对其结构及力学性能进行分析。结果发现:由于加入纤维蛋白胶,复合支架材料在一定程度上延长了磷酸钙骨水泥的初凝时间,但并不影响磷酸钙骨水泥的终凝时间;同时,加入纤维蛋白胶改变了骨水泥固化体的微观结构,提高了骨水泥的抗压强度,其最大抗压强度达到14MPa,弹性模量在96.64~269.39MPa之间,空隙率为38.8%。与在同样条件下制备的磷酸钙骨水泥比较,复合支架材料的抗压强度增强了55.6%,而空隙率仅仅下降了6.9%;XRD分析显示,复合支架材料并不影响磷酸钙骨水泥的最终的转化,其结晶结构仍是羟基磷灰石结构,是更好的骨组织工程支架材料。 The compound scaffolds are constructed in vitro by mixing absorbable calcium phosphate cement (CPC) and fibrin glue (FG) in some proportion. The structural and mechanical properties of the compound scaffolds and the pure calcium phosphate cement (CPC) were analyzed by the means of X-ray diffraction (XRD), scanning electronic microscope (SEM) and measurement of porosity to find an optimal scaffold for bone tissue engineering. The results show that the FG prolongs initial setting time, but does not influence final setting time. The compressive strength of the compound scaffolds is greatly higher than that of pure CPC and the maximum compressive strength of it is about 14MPa, which increases by 55.6% compared with pure CPC. The rate of porosity decreases to 38.8%, which reduces by only 6.9% compared with pure CPC. The elastic modulus of it locates between 96.64 and 269.39MPa. The result of XRD shows that the compound scaffold has hydroxyapatite crystalline morphology like pure CPC, and its morphology observed by SEM has been obviously changed by adding FG, which results in the increase in the compressive strength of compound scaffolds. It is proved that the compound scaffolds is an optimal scaffold for bone tissue engineering.
出处 《功能材料》 EI CAS CSCD 北大核心 2006年第4期607-610,共4页 Journal of Functional Materials
基金 国家自然科学基金重点资助项目(30330610)
关键词 组织工程 磷酸钙骨水泥 纤维蛋白胶 复合支架 tissue engineering calcium phosphate cement fibrin glue compound scaffold
  • 相关文献

参考文献10

  • 1Vacanti C A,Vacanti J P.[J].Clin plast surg,1994,21(3):445-462.
  • 2Ma P X.[J].Materials Today,2004,7:30-40.
  • 3Hollister S J.[J].Nature Materials,2005,4(7):518-524.
  • 4Hutmacher D W.[J].Biomater Sci Polym Edn,2001,12:107-124.
  • 5Hutmacher D W,Schantz T,Zein I,et al.[J].Biomed Mater Res,2000,55:203-216.
  • 6Xu H H,Quinn J B,Takagi S,et al.[J].Biomaterials,2004,25(6):1029-1037.
  • 7Dos Santos L A,de Oliveira L C,Rigor E C D,et al.[J].Artificial Organs,2000,24(3):212-216.
  • 8Martinowitz U,Saltz R.[J].Curr Opin Hematol,1996,3(5):395-402.
  • 9Schlag G,Redl H.[J].Clin Orthop,1988,227:269-285.
  • 10Kawamura M,Urist M R.[J].Clin Orthop,1988; 235:302-310.

同被引文献265

引证文献20

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部