期刊文献+

节理倾角对单节理岩样变形破坏影响的数值模拟 被引量:11

Effect of Joint Inclination on Deformation and Failure of Rock Specimen with a Single Joint in Plane Strain Compression
下载PDF
导出
摘要 采用FLAC模拟了节理倾角对各向异性岩样峰值强度、力学行为及剪切带图案的影响。节理由实体单元模拟。对于节理之外的岩石,采用莫尔库仑与拉破坏复合的破坏准则,峰后本构关系选择线性应变软化模型;对于节理,采用理想弹塑性的莫尔库仑准则。结果表明,无节理密实岩石的峰值强度最高。节理岩样的剪切应变或集中在节理上,或集中在新剪切带上,峰值强度随节理倾角而改变。新剪切带启动于节理的端部,然后沿其固有方向传播。当节理倾角适中时,节理岩样的峰值强度较低,岩样的行为受控于节理。当节理倾角较高或较低时,可观测到应变软化行为。若节理倾角较低,新剪切带的长度随节理倾角的降低而增加,这导致了陡峭的峰后应力-应变曲线。若节理倾角较高,由于节理倾角对新剪切带的厚度和倾角几乎没有影响,因此,峰后斜率不依赖于节理倾角。 Peak strength, mechanical behavior, and pattem of shear band (SB) of anisotropic jointed rock specimen were modeled by FLAC. The failure criterion of intact rock was a composite Mohr-Coulomb criterion with tension cut-off and the post-peak constitutive relation was linear swain-softening. Joint was treated as quadrate elements of ideal plastic material beyond peak strength. Intact rock without joint has a higher peak strength. Shear strain of jointed rock is concentrated into joint or new generated SBs. Peak strength of jointed rock depends on the joint inclination (JI). The new SBs are origanated from the two ends of joint and propagate along their inherent directions. For moderate JI, lower strength and the behavior of jointed rock specimen are mainly governed by joint. For lower or higher JI, the peak strength of jointed rock specimen is higher and the strain-softening behavior is apparent. For lower JI, slip along SB has a greater contribution to the axial strain of jointed rock, leading to steeper post-peak stress-strain curve. For higher JI, the slope of postpeak stress-strain curve is not dependent on JI since JI does not influence the thickness and the inclination of SB.
作者 王学滨
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2006年第2期24-29,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(50309004)
关键词 单节理岩样 节理倾角 应力-应变曲线 峰值强度 剪切带 应变软化 single jointed rock specimen joint inclination stress-strain curve peak strength shear band strain-softening
  • 相关文献

参考文献4

二级参考文献32

  • 1Meifeng Cai, Jinan Wang, Shuanghong Wang Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083. China.Prediction of Rock Burst with Deep Mining Excavation in Linglong Gold Mine[J].Journal of University of Science and Technology Beijing,2001,8(4):241-243. 被引量:3
  • 2铃木光.岩体力学与测定[M].北京:煤炭工业出版社,1980..
  • 3Barlar G. Rock anisotropic-theory laboratory testing[J]. Rock Mechanics, 1974, 9: 51-56
  • 4Ribacchi R. Rock stress measurements in anisotropic rock mass[A].In: Field Measurement in Rock Mechanics[C]. [s. I.]: [s. n.], 1977
  • 5Lekhnitskii S G. Theory of Elasticity of an Anisotropic Body[M].Moscow: Mir Publishers, 1981
  • 6(英)阿特威尔PB 法默LW 成都地质学院工程地质教研室译.工程地质学原理[M].北京:中国建筑工业出版社,1982..
  • 7沃特科里VS 水利水电岩石力学情报网译.岩石力学性质手册[M].北京:水利出版社,1981..
  • 8(苏)谢尔盖耶夫EM 孔德坊详.工程岩土力学[M].北京:地质出版社,1990..
  • 9孔德坊.工程岩土力学[M].北京:地质出版社,1992..
  • 10尹光志,鲜学福,金立平,刘成明.地应力对冲击地压的影响及冲击危险区域评价的研究[J].煤炭学报,1997,22(2):132-137. 被引量:32

共引文献55

同被引文献151

引证文献11

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部