期刊文献+

使用BP网络改进K-means聚类效果 被引量:3

Using BP Neural Network to Improve K-mean' Result
下载PDF
导出
摘要 K-means 算法中的 k 值的确定和初始聚类中心的选择严重影响聚类效果。针对这一问题,本文提出使用 BP神经网络改进 K-means 聚类效果的方法。通过对聚类结果进行反复训练,调整聚类数,K-means 的聚类效果得到改善。采用人工数据和实际商业数据的实验证明该方法能有效地改善传统的聚类效果。 The value of K and the selection of initial centers heavily affect the result of K-means algorithm. Aiming at this problem, this paper puts forward a method that uses BP neural network to improve K-means' result. Training clustering result by BP network, the effect of K-means can be improved. Experiments using artificial data and actual business data testify the validity of this method. It can improve the traditional K-means effect well.
出处 《计算机科学》 CSCD 北大核心 2006年第3期194-196,共3页 Computer Science
关键词 K-MEANS BP 聚类 神经网络 K-Means, BP, Clustering, Neural network
  • 相关文献

参考文献1

二级参考文献19

  • 1许雷.一种聚类新算法:模拟退火[J].模式识别与人工智能,1989,1:1-16.
  • 2J MacQueen.some methods for classification and analysis of multivariate observations[C].In:Proc 5th Berkeley Symp Math Statist,Prob,1967; 1:281~297
  • 3Z Huang. Extensions to the k-means algorithm for clustering large data sets with categorical values[J].Data Mining and Knowledge Discovery, 1998 ;2:283~304
  • 4Bin Zhang,Gary Kleyner,Meichun Hsu.A Local Search Approach to K-Clustering. Software Technology Laboratory,HP Laboratories Palo Alto, HPL- 1999-119,1999-10
  • 5K Krishma,M N Murty. Genetic K-means Algorithm[J].IEEE Trans on System,Man,and Cybernetics,Part B,1999;29(3):433~439
  • 6G Rudolph.Convergence of Canonical Genetic Algorithm[J].IEEE Trans on Neural Networks,1994;5(1):96~100
  • 7O Martin,S W Otto,E W Felten. Large-Step Markov Chains for the Traveling Salesman Problem[J].Complex Systems, 1991 ;5(3) :299~326
  • 8O Martin ,S W Otto.Combining Simulated Annealing with LocalSearch Heuristics[J].Annals of Operations Research,1996;63:57~75
  • 9D S Johnson,L A McGeoch.The Traveling Salesman Problem:A Case Study in Local Optimization[C].In:E H L Aarts,J K Lenstra eds. Local Search in Combinatorial Optimization,John Wiley & Sons, 1997:215~310
  • 10H Ramalhinho Lourenco,M Zwijnenburg. Combining the Large-Step Optimization with Tabu-search :Application to the Job-Shop Scheduling Problem[C].In:I H Osman,J P Kelly eds. Meta-Heuristics:Theory & Applications, Kluwer Academic Publishers, 1996:219~236

共引文献7

同被引文献18

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部