摘要
传统索引方法对高维数据进行近邻搜索时会面临维数灾难问题,向量近似方法是一种有效的高维检索方法。提出一种 Hadamard 变换域上的向量近似方法,在变换域能量最大的分量上建立顺序索引,然后建立近似向量文件。同时提出低維过滤算法,可以在近邻搜索过程中高效排除不匹配近似向量,减少 I/O 访问时间,提高查询效率。在大型高维图像特征库上的实验表明,该方法性能优于小波变换域的向量近似方法。
Traditional indexing methods face the difficulty of ' curse of dimensionality' at high dimensionality. The vector approximation file(VA-File)approach based on wavelet transform is a very efficient high dimensional indexing method. In this paper, a new VA-File approach in the Hadamard transform domain is introduced. This approach combines Hadamard transform and principle component filtering algorithm, which can reduce the searching complexity and I/O cost dramatically on large image databases. Experiment results show that the new method is more efficient than VA-File based on wavelet transform.
出处
《计算机科学》
CSCD
北大核心
2006年第3期212-214,共3页
Computer Science
基金
(十五国防科技(电子)预研项目
413160501)
关键词
图像数据库
维数灾难
k-近邻搜索
向量近似
HADAMARD变换
Image databases, Curse of dimensionality, k-nearest neighbor search, Vector approximation, Hadamard transform