期刊文献+

多时变时滞细胞神经网络的全局指数稳定性 被引量:3

Globally Exponential Stability of Cellular Neural Networks with Multiple Time-Varying Delays
下载PDF
导出
摘要 针对一类多时变时滞细胞神经网络,利用Young不等式和Halanay不等式技术,给出了保证平衡点惟一性和全局指数稳定性的几个充分判据.所得到的全局指数稳定判据完全独立于时滞,不要求时变时滞的可微性和神经元激励函数的严格单调性,且通过几个注释说明本文的结果改进和扩展了现有一些文献中的结果.仿真例子证明了本文结果的有效性. Globally exponential stability of a class of cellular neural networks with multiple time varying delays is investigated. Using the technique by virtue of Young and Halanay inequalities, some new sufficient criteria are given to ensure the uniqueness of equilibrium point and globally exponential stability. In this way the criteria given for globally exponential stability are entirely independent of time delay without the differentiability of time-varying delay and the strict monotonicity of neuron's excitation function, In addition, some remarks are given to explain how the results as shown in this paper improves and extends the earlier works as references of which the effectivencess is proved via simulation example.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第4期367-370,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(6024401760325311) 辽宁省自然科学基金资助项目(20022030)
关键词 全局指数稳定 细胞神经网络 多时变时滞 LYAPUNOV函数 YOUNG不等式 globally exponential stability cellular neural network multiple time-varying delays Lyapunov function Young inequality
  • 相关文献

参考文献11

  • 1Chua L O,Yang L.Cellular neural networks:theory[J].IEEE Transactions on Circuits and Systems-Ⅰ,1988,35(10):1257-1272.
  • 2Chua L O,Yang L.Cellular neural networks:applications[J].IEEE Transactions on Circuits and Systems-Ⅰ,1988,35(10):1273-1290.
  • 3Liao T,Wang F.Global stability for cellular neural networks with time delay[J].IEEE Transactions on Neural Networks,2000,11(6):1481-1484.
  • 4Arik S.An analysis of global asymptotic stability of delayed cellular neural networks[J].IEEE Transactions on Neural Networks,2002,13(5):1239-1242.
  • 5季策,张化光.一类具有时滞的广义Hopfield神经网络的动态分析[J].东北大学学报(自然科学版),2004,25(3):205-208. 被引量:8
  • 6Zhou D M,Cao J D.Globally exponential stability conditions for cellular neural networks with time-varying delays[J].Applied Mathematics and Computation,2002,131(2):486-496.
  • 7Cao J,Ho D W C.A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach[J].Chaos,Solitons and Fractals,2005,24(11):1317-1329.
  • 8Zhang Q,Wei X,Xu J.Delay-dependent exponential stability of cellular neural networks with time-varying delays[J].Chaos,Solitons and Fractals,2005,23(11):1363-1369.
  • 9Liao X,Wang J.Algebraic criteria for global exponential stability of cellular neural networks with multiple delays[J].IEEE Transactions on Circuits and Systems-Ⅰ,2003,50(2):268-275.
  • 10Mohamad S,Gopalsamy K.Exponential stability of continuous-time and discrete-time cellular neural networks with delays[J].Applied Mathematics and Computation,2003,135(1):17-38.

二级参考文献7

  • 1[1]Dan S. On the hysteresis and robustness of Hopfield neural networks[J]. IEEE Trans on Circuits and Systems :Analog and Digital Signal Processing, 1993,40(11):745-748.
  • 2[4]Liu D, Lu Z. A new synthesis approach for feedback neural networks based on the perceptron training algorithm[J]. IEEE Trans on Neural Networks, 1997,8(6):1468-1482.
  • 3[5]Marcus C M, Westervlet R M. Stability of analog neural networks with delay[J]. Physical Review A, 1989,39(6):347-359.
  • 4[7]Ye H, Michel A N, Wang K. Global stability and local stability of Hopfield neural networks with delays[J]. Physical Review E, 1994.50(5):4206-4213.
  • 5[8]Arisk S. Stability analysis of delayed neural networks[J]. IEEE Transactions on Circuits and System, 2000,47(7):1089-1092.
  • 6[9]Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[A]. Proceedings of the National Academy of Sciences[C]. Washington:Wiley, 1984.3088-3092.
  • 7[10]Michel A N, Wang K, Hu B. Qualitative theory of dynamical systemsthe role of stability preserving mappings[M]. Second Edition. New York: Marcel Dekker, 2001.205-206.

共引文献7

同被引文献20

  • 1Cao J, Ho D W C. A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach [J]. Chaos,Solitons and Fractals,2005,24(11) :1317-1329.
  • 2Zhang Q,Wei X,Xu J. Delay-dependent exponential stability of cellular neural networks with time-varying delays [J]. Chaos, Solitons and Fractals, 2005,23 (11) : 1363-1369.
  • 3Li Y K. Existence and stability of periodic solutions for Cohen-Grossberg neural networks with multiple delays[J]. Chaos, Solitons and Fractals , 2004,20(3) :459 - 466.
  • 4Ji C, Zhang H G, Wei Y. LMI approach for global robust stability of Cohen-Grossberg neural networks with multiple delays[J ]. Neurocomputing, 2008,71 (4) : 475 - 485.
  • 5Wang L, Zou X F. Harmless delays in Cohen-Grossberg neural networks[J]. Physica D, 2002,170(2) : 162 - 173.
  • 6Lu W L, Chen T P. R+^n-global stability of a Cohen- Grossberg neural network system with nonnegative equilibria [J]. Neural Networks, 2007,20(6) :714-722.
  • 7Ozcan N, Arik S. Global robust stability analysis of neural networks with multiple time delays [J ]. IEEE Trans on Circuits and Systems- I , 2006,53 ( 1 ) : 166 - 176.
  • 8Singh V. Robust stability of cellular neural networks with delay: linear matrix inequality approach [ J ]. IEE Proceedings Control Theory and Applications, 2004, 151 (1):125- 129.
  • 9Boyd S, Chaoui L E, Feron E, et al. Linear matrix inequnities in system and control theory [ M ]. Philadelphia: SIAM, 1994.
  • 10Chen T, Rong L. Robust global exponential stability of Cohen-Grossberg neural networks with time delays [J ]. IEEE Trans on Neural Networks, 2004,15 ( 1 ) : 203 - 206.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部