期刊文献+

奇异摄动系统稳定性界

Stability Bounds of Singularity Perturbed Systems
下载PDF
导出
摘要 考察了线性奇异摄动系统x=A(ε)x的ε稳定性,同时对扰动系统x=(A(ε)+△A)x的鲁棒性问题进行了研究,运用代数矩阵和李亚普诺夫稳定性理论得到了相应的ε-稳定性界和稳定鲁棒性界。实例分析验证了所提出结果的有效性。 In this paper, both the ε-stability of linear singularly perturbed systems x^·=A (ε) x and the robustness of uncertain systems x^·= (A (ε) +ΔA) x are investigated. Based on matrix theory and LYAPUNOV stability theory,ε-stability bounds and stability robustness bounds are obtained respectively. Several examples are given to illustrate the proposed results.
出处 《江苏工业学院学报》 2006年第1期55-57,共3页 Journal of Jiangsu Polytechnic University
关键词 奇异摄动系统 稳定性 稳定鲁棒性 singularly perturbed systems stability stability robustness
  • 相关文献

参考文献6

  • 1Klimushev, Krasovskii N K. Uncertain Asymptotic Stability of Systems Differential Equations with a Small Parameter in the Derivative Terms [J]. J of Applied Mathematics and Mechics,1962, 25 (9): 1 011-1 025.
  • 2Naidu D S. Singular Perturbation Methodology in Control Systems [M]. London: Perter Pererinus Ltd, 1998.
  • 3Feng W. Characterization and Computation for the Bounds in Linear Time Invariant Singularly Perturbed Systems [J]. Systems Control Letter, 1988, 11: 195-202.
  • 4Chen B, Lin C. On the Stability Bounds of Singularity Perturbed Systems [J], IEEE Tran Auto Control, 1990, 35: 1265-1 270.
  • 5Sen S, Datta K B. Stability Bounds of Singularity Perturbed Systems [J]. IEEE Tran Auto Control, 1993, 35:302-304.
  • 6Lancen Sard. New Stability Performance Results for Singularity Perturbed Systems [J]. IEEE Tran Auto Control, 1996,32, 807-808.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部