摘要
设f(x)是闭区间I上的连续函数,f(x)为I上的Zygmund函数.如果存在常数C≥0,使得f(x)满足|f(x+t)-2f(x)+f(x-t)|<Ct,则对一切x,x±t∈I,t>0成立.可将其延拓成上的Zygmund函数的充分条件,并估计其范数‖f‖z.
Let f(x) be continuous on closed interval I, f(x) is called a Zygmund function on I if there exists one constant C≥0 such that J|f(x+t)-2f(x)+f(x)|〈Ct for all x,x±t∈I,t〉0. We give sufficient condition for such Zygmund function which can be extended to a Zygmund function on R and give estimation for its norm ‖f‖.
出处
《华侨大学学报(自然科学版)》
CAS
北大核心
2006年第2期119-122,共4页
Journal of Huaqiao University(Natural Science)
基金
福建省自然科学基金资助项目(Z0511025)
关键词
ZYGMUND函数
拟共形变形
拟共形映照
延拓
Zygmund function, quasiconformal deformation, quasiconformal mapping, extension