摘要
对Galois数域存在正规整基的充要条件进行研究具有一定的理论价值。四次域是重要的Galois数域之一,该文对四次域Q(m,n)进行了讨论;利用Galois扩张、域的判别式及整基等一些理论,得出了其具有正规整基的充要条件为m≡n≡1(mod4)(其中m,n是2个不同的无平方因子有理整数)。
The quartic field is an important one among Galois number fields. This paper deals with the necessary and sufficient condition for the existence of the normal integral basis of the quartic field. According to the Galois extension theory of the number field, the discriminant of the field and the integral basis theory, the necessary and sufficient condition is attained which is m≡n≡1(mod4), where rn and n are two different rational integers without square factors.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第4期506-508,共3页
Journal of Hefei University of Technology:Natural Science
基金
安徽省自然科学基金资助项目(03042201)
关键词
四次域
整基
正规整基
GALOIS扩张
判别式
quartic field
integral basis
normal integral basis
Galois extension
discriminant