期刊文献+

亚50nm自对准双栅场效应晶体管的量子和短沟道效应的研究 被引量:3

STUDY ON QUANTUM AND SHORT-CHANNEL EFFECTS FOR SUB-50nm FINFETS
下载PDF
导出
摘要 采用有限元法自洽求解泊松-薛定谔方程,数值模拟了一种新型的亚50nm N沟道双栅MOS场效应晶体管的电学特性,系统阐述了尺寸参数对短沟道效应的影响规律.比较了不同尺寸参数下的亚阈值摆幅、阈值电压下跌和D IBL效应以及沟道跨道,获得了最佳硅鳍宽度(Tfin)和栅极长度(Lg)参数.模拟结果与实验数据的经典数值模拟进行了比较,表明由于电子束缚效应对器件性能的影响,考虑量子效应对F inFET器件的性能优化尤其重要. A new kind of sub-50 nm N channel double gate MOS nanotransistors was simulated by solving coupling Poisson- Schrodinger equations in a self-consistent way with a finite element method, and a systematic simulation-based study was presented on the short-channel effects. Subthreshold swing, threshold-vohage roll-off, and drain-induced barrier lowering as well as the transconductance were investigated in terms of different dimensional parameters. The optimal Si-fin thickness ( Tfin) and the gate length ( Lg) were obtained. The simulation results were compared with the experimental results in order to verify the validity of the proposed quantum mechanical approach. In order to understand the influence of electron confinement, the result of quantum mechanical simulation were also compared with that of the classical approach. Our simulation results indicate that quantum mechanical simulation is essential for the realistic optimization of the FinFET structure.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2006年第2期90-94,共5页 Journal of Infrared and Millimeter Waves
基金 国家重点基础研究发展规划973(2001CB61040) 国家自然科学基金(60476040 60576068) 国家自然科学基金重点项目(60221502) 上海科学技术委员会重大基金(05DJ14003)资助项目
关键词 自对准双栅场效应晶体管 量子力学计算 短沟道效应 量子效应 FinFETs quantum-mechanical calculation short-channel effect quantum effect
  • 相关文献

参考文献11

  • 1Hsieh C,Wu C,Jih F,et al.Focal-plane-arrays and CMOS readout techniques of infrared imaging systems [ J ].IEEE Trans.Circuits and Systems for Video Technology,1997,7(4):594-605.
  • 2Hisamoto D,Lee W C,Kedzierski J,et al.FinFET-a selfaligned double-gate MOSFET scalable to 20 nm [J].IEEE Trans.Elec.Dev.,2000,47(12):2320-2325.
  • 3Huang X,Lee W C,Kuo C,et al.Sub-50 nm P-channel FinFET [ J ].IEEE Trans Elec.Dev.,2001,48(5):880-886.
  • 4Svizhenko A,Anantram MP,Govindanet TR,et al.Two dimensional quantum mechanical modeling of nanotransistors [ J].J.Appl.Phys.,2002,91(4):2343-2354.
  • 5Choi Y K,King T J,Hu C.Nanoscale CMOS spacer Fin-FET for the terabit era [ J ].IEEE Trans.Elec.Dev.,2002,23(1):25-7.
  • 6Pei G,Kedzierski J,Oldiges P,et al.FinFET design considerations based on 3-D simulation and analytical modeling [J].IEEE Trans.Electron Devices,2002,49(8):1411-1419.
  • 7Kedzierski J,Meikei Ieong,Edward Nowak,et al.Extension and source/drain design for high-performance FinFET devices [ J ].IEEE Trans.Elec.Dev.,2003,50 (4):952-958.
  • 8Simon Li.Apsys User 's Manual [ M ].Canada:Crosslight Software Inc.Press,2004,153-155.
  • 9孙立忠,陈效双,郭旭光,孙沿林,周孝好,陆卫.CdTe和HgTe能带结构的第一性原理计算[J].红外与毫米波学报,2004,23(4):271-275. 被引量:10
  • 10疏小舟,吴砚瑞,陈效双,褚君浩.时域有限差分法模拟量子阱红外探测器光栅的光耦合(英文)[J].红外与毫米波学报,2004,23(6):401-404. 被引量:10

二级参考文献28

  • 1疏小舟,吴砚瑞,陈效双,褚君浩.时域有限差分法模拟量子阱红外探测器光栅的光耦合(英文)[J].红外与毫米波学报,2004,23(6):401-404. 被引量:10
  • 2[1]Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys. Rev., 1964, 136: B864-871.
  • 3[2]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys.Rev., 1965, 140: A1133-1138.
  • 4[3]Singh D J, Planwaves. Pseudopotentials and the LAPW Method[M]. Massachusetts: Kluwer, 1994.
  • 5[5]Blaha P, Schwarz K, Madsen G, et al. WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties[CP]. (Karlheinz Schwarz, Techn. Universitt Wien, Austria), 2001, ISBN 3-9501031-1-2.
  • 6[7]Stefano Baroni Stefano de Gironcoli. Andrea Dal Corso. et al. Phonos and relateed crystal properties from density-functional perturbation theory[J]. Rev.Mod.Phys., 2001, 73: 515-562.
  • 7[8]Jones Ro, Gunnarsson O. The density functional formalism, its applications and prpspects[J]. Rev.Mod.Phys., 1989, 61: 689-746.
  • 8[9]Fouldes W M C, Mitas L, Needs R J, et al. Quantum minte-carlo simulations of solids[J]. Rev.Mod.Phys., 2001, 73: 33-83.
  • 9[10]Ceperley D M, Alder B L, Ground state of the electron gas by a stochastic method[J]. Phys.Rev.Lett.,1980, 45: 566-569.
  • 10[11]Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Phys.Rev., 1981, B23: 5048-5079.

共引文献22

同被引文献25

  • 1张鹤鸣,崔晓英,胡辉勇,戴显英,宣荣喜.应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究[J].物理学报,2007,56(6):3504-3508. 被引量:16
  • 2周忠堂,郭丽伟,邢志刚,丁国建,谭长林,吕力,刘建,刘新宇,贾海强,陈弘,周均铭.AlGaN/AlN/GaN结构中二维电子气的输运特性[J].物理学报,2007,56(10):6013-6018. 被引量:6
  • 3Tomohisa M,Naoharu S,Tsutomu T. High-performance strained-SOI CMOS devices using thin film SiGe-on-insulator technology[J].{H}IEEE Transactions on Electron Devices,2003,(04):988-994.
  • 4Tsutomu T,Naoharu S,Tomohisa M. Ultrathin body SiGe-on-insulator pMOSFETs with high-mobility SiGe surface channels[J].{H}IEEE Transactions on Electron Devices,2003,(04):1328-1333.
  • 5Gao F,Balakumar S,Balasubramanian N. High germanium content strained SGOI by oxidation of amorphous SiGe film on SOI substrates[J].{H}Electrochemical and Solid-State Letters,2005,(12):337-340.
  • 6Tsutomu T,Shu N,Yoshihiko M. High-mobility strained SiGe-on-insulator pMOSFETs with Ge-rich surface channels fabricated by local condensation technique[J].{H}IEEE Electron Device Lett,2005,(04):243-245.
  • 7Yang H G,Masatoshi I,Shogo I. Effective passivation of defects in Ge-rich SiGe-on-insulator substrates by Al2O3 deposition and subsequent post-annealing[J].{H}Solid-State Electronics,2011.128-133.
  • 8Xie Y H,Don M,Fitzgerald E A. Very high mobility two-dimensional hole gas in Si/GexSi1-x/Ge structures grown by molecular beam epitaxy[J].{H}Applied Physics Letters,1993,(16):2263-2264.
  • 9Thompson S E,Mark A,Chis A. A 90-nm logic technology featuring strained-silicon[J].{H}IEEE Transactions on Electron Devices,2004,(11):1790-1797.
  • 10Toshifumi I,Toshinori N,Tsutomu T. High current drive uniaxially-strained SGOI pMOSFETs fabricated by lateral strain relaxation technique[A].2005.178-179.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部