期刊文献+

基于支持向量机的血液细胞核彩色图像分割 被引量:21

Color Segmentation of Nuclei of Blood Cell Using Support Vector Machines
原文传递
导出
摘要 对血液细胞核进行精确的分割是自动分析与识别的关键环节,现有经典算法很难获得满意的效果。本文将分割问题转化为分类问题,利用支持向量机(SVM)实现血液细胞核彩色图像分割。为了获得最佳的分割效果,对采用不同色彩空间、核函数及样本数量的分割结果进行了详细的比较和分析。实验结果表明,与目前经典的分割算法比较,该算法具有分割速度快、准确率高及泛化性强等优点。 To extract nuclei of white blood cell from the micro-image in visual field with microscope,a novel color image segmentation scheme using Support Vector Machines(SVM) is proposed. In this paper,the SVM is trained on 4097 positive samples made up of white blood cell nuclei pixels and 2910 negative samples(some red blood cells and background pixels). To improve the performance of real images, detailed analysis and comparisons are made by choosing different color spaces,kernel functions,samples. We demonstrate experimentally that the proposed algorithm achieves better performance than the existing methods, while being more rapid, accurate and robust.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2006年第4期479-483,共5页 Journal of Optoelectronics·Laser
基金 国家"863"计划资助项目(2001AA422390) 国家自然科学基金资助项目(60275035) 南开大学科技创新基金资助项目
关键词 图像分割 支持向量机(SVM) 血液细胞核 色彩空间 image segmentation support vector machines(SVM) blood cell nuclei color space
  • 相关文献

参考文献3

二级参考文献29

  • 1王小鹏,罗进文.基于形态学梯度重建的分水岭分割[J].光电子.激光,2005,16(1):98-101. 被引量:35
  • 2[3]Bamford Pascal Christopher. Segmentation of cell images with application to cervical cancer screening[Ph D dissertation]. University of Queensland, Australia, 1999.52~53
  • 3[4]Yang Fa-Guo, Jiang Tian-Zi. Cell image segmentation with kernel-based dynamic clustering and an ellipsoidal cell shape model.Journal of Biomedical Informatics, 2001, 34 (2): 67~73
  • 4[5]Park J, Keller J M. Snakes on the watershed. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(10): 1201~1205
  • 5[6]Horowitz S L, Pavilidis T. Picture segmentation by a tree traversal algorithm. Journal of the Association for Computing Machinery, 1976, 23(2): 368~388
  • 6[7]Mehnert Andrew, Jaekway Paul. An improved seeded region growing algorithm. Pattern Recognition Letters, 1997, 18 (6):1065~1071
  • 7[8]Ostu N. A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man and Cybernetics,1979, 9(1): 62~66
  • 8[9]Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis Machine Intelligence, 1986, 8(6): 679~698
  • 9Hallinan P W.Recognizing human eyes[J].SPIE Proc Geometric Methods in Computer Vision,1991,1570:214-226.
  • 10Deng Jyh-yuan,Lai Feipei.Region-based template deformation and masking for eye-feature extraction and description[J].Pattern Recognition,1997,30(3):403-419.

共引文献32

同被引文献183

引证文献21

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部