摘要
给出了一方成功数a(K1,n)的新定义:甲乙二人在完全图Kp上博弈,首先甲用绿色把Kp的一条边上色,接着乙用红色染Kp的另一条无色边,如此甲乙交替地对Kp的无色边进行着色,若甲在Kp上染成绿星K1,n且乙在Kp上没有染成红星K1,n,甲赢;否则甲输乙赢.甲能取胜的最小值p=p(n)称为K1,n的一方成功数,记成a(K1,n).应用穷举法,本文获得了一方成功数a(K1,4)=7.
Unilateral successful number a(K1,n) has been redefined in this paper: Suppose person a and b contest on complete graph Kp. a first colors one of the edges of Kp green, b then colors another edge red. a and b color the rest edge alternately, a wins the game if what a has colored forms a star K1,n while b fails to. The smallest natural number P=P(n) for a to win the game is called the unilateral successful number, denoted α(K1,4). The authors have proved that a(K1.4) equals 7 by using exhaustive method.
出处
《中北大学学报(自然科学版)》
EI
CAS
2006年第2期156-159,共4页
Journal of North University of China(Natural Science Edition)
基金
山西省自然科学基金资助项目(20041002)
国家自然科学基金资助项目(10471081)
关键词
一方成功数
星博弈
完全图
unilateral successful number
star game
complete graph