期刊文献+

一类带强迫项的中立型方程非振动解的渐近性

Asymptotic Behavior of Non-Oscillatory Solutions to First-Order Neutral Equations with Forcing Term
下载PDF
导出
摘要 应用压缩映像原理讨论了一类带强迫项的一阶中立型微分方程非振动解的渐近性,得到了该方程的所有非振动解当t→∞时趋于零的充分条件.所得结果推广了文献[1]中带强迫项的一阶中立型微分方程所有解振动或当t→∞时趋于零或趋于±∞的充要条件的结论. By using Banach compression-imaging principle, the authors have made a discussion over the asymptotic behavior of non-oscillatory solutions to first-order neutral differential equation with forcing term, obtaining the sufficient conditions for every non-oscillatory solutions to the equation hereinabove tends to zero when t tends to infinity (t→∞). This finding has generalized the viewpoint that all the solutions to first-order neutral differential equation are oscillatory, and that the solutions tend to 0/±∞ when t tends to infinity.
出处 《中北大学学报(自然科学版)》 EI CAS 2006年第2期178-179,共2页 Journal of North University of China(Natural Science Edition)
关键词 泛函微分方程 中立型 强迫项 非振动解 渐近性 functional differential equation neutral forcing term non-oscillatory solutions asymptotic behavior
  • 相关文献

参考文献2

  • 1O nose H.O sc illation of a functiona l d ifferen tia l equation aris ing from an industria l prob lem[].JA ustra lM athSoc.1978
  • 2Parh in,R athurn.O sc illation criteria for forced first order neu tra l d ifferen tia l equation w ith variab le coeffic ien ts[].JM ath and A pp l.2001

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部