摘要
基于吉波斯随机场分割模型的图象分割方法是一种常用的重要方法。本文结合广义模糊集理论,针对噪声大的模糊图象分割问题,重新定义了吉波斯场的集团势函数,将广义模糊隶属度引入势函数,建立了新的分割模型。在此基础上用条件迭代模式(ICM)法对图象进行了优化分割。实验表明,该方法能有效地分割退化的模糊图象。
In order to segment the blurred image with large noise, the authors propose a new Bayesian image segmentation method based on generalized fuzzy Gibbs random field. Based on the generalized fuzzy set, the new method introduces generalized fuzzy membership into Gibbs potential function and the potential function is redefined to obtain the new segmentation model. The optimal processing is executed through iterative conditional modes (ICM). The experiment results showed that the new approach could effectively segment the degenerated images.
出处
《南方医科大学学报》
CAS
CSCD
北大核心
2006年第4期390-393,共4页
Journal of Southern Medical University
基金
国家"973"项目(2003CB716103)
广东省自然科学基金(032888)~~
关键词
吉波斯随机场
集团势函数
广义模糊集
条件迭代模式
Gibbs random field
clique potential function
generalized fuzzy set
iterative conditional modes