期刊文献+

基于广义模糊吉波斯随机场的噪声图象分割 被引量:2

Noise image segmentation based on generalized fuzzy Gibbs random field
下载PDF
导出
摘要 基于吉波斯随机场分割模型的图象分割方法是一种常用的重要方法。本文结合广义模糊集理论,针对噪声大的模糊图象分割问题,重新定义了吉波斯场的集团势函数,将广义模糊隶属度引入势函数,建立了新的分割模型。在此基础上用条件迭代模式(ICM)法对图象进行了优化分割。实验表明,该方法能有效地分割退化的模糊图象。 In order to segment the blurred image with large noise, the authors propose a new Bayesian image segmentation method based on generalized fuzzy Gibbs random field. Based on the generalized fuzzy set, the new method introduces generalized fuzzy membership into Gibbs potential function and the potential function is redefined to obtain the new segmentation model. The optimal processing is executed through iterative conditional modes (ICM). The experiment results showed that the new approach could effectively segment the degenerated images.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2006年第4期390-393,共4页 Journal of Southern Medical University
基金 国家"973"项目(2003CB716103) 广东省自然科学基金(032888)~~
关键词 吉波斯随机场 集团势函数 广义模糊集 条件迭代模式 Gibbs random field clique potential function generalized fuzzy set iterative conditional modes
  • 相关文献

参考文献8

  • 1Stan ZL.Markov random field modeling in image analysis [ M ].Tokyo:Springer-Verlag,2001:8-26.
  • 2Helene C,Alain H,Wojciech P.Fuzzy Random Fields and Unsupervised Image Segmentation [J].IEEE Trans Geosci Remot Sensing,1993,31(4),801-10
  • 3Wei J,Li ZN.An efficient two-pass MAP-MRF algorithm for motion estimation based on mean field theory [J].IEEE Trans Circ Sys Video Tech,1999,9(6):960-72.
  • 4Jie W,Izidor G.MRF-MAP-MFT visual object segmentation based on motion boundary field [J ].Pattern Recognit Lett,2003,24(16):3125-39.
  • 5Zhang J.Mean field theory in EM procedures for MRF's[J].IEEE Trans Signal Process,1992,40(10):2570-83.
  • 6Gerhard W.Image analysis random fields and dynamic monte carlo methods[M].Berlin:Springer-Verlag,1995:180-200.
  • 7Celeux,G,Forbes F,Peyrard N.EM procedures using mean fieldlike approximations for Markov model-based image segmentation[J].Pattern Recognit,2003,36 (1),131-44.
  • 8Krishnamachari S,Chellappa R.Multiresolution Gauss-Markov random field models for texture segmentation [ J ].IEEE Trans Image Process,1997,(2):251-67.

同被引文献13

  • 1高贵,匡纲要,李德仁.高分辨率SAR图像分割及目标特征提取[J].宇航学报,2006,27(2):238-244. 被引量:18
  • 2陈功,张雄伟,邓玉良.基于HMM与K-均值聚类的声目标识别[J].弹箭与制导学报,2006,26(2):144-147. 被引量:5
  • 3Clausi D A. An analysis of co-occurrence texture statistics as a function of grey level quantization [J]. Canada Journal of Remote Sensing, 2002, 28(1) : 1.
  • 4Nielsen B, Albregtsen F, Danielsen H E. Low dimensional adaptive texture feature vectors from class distance and class difference matrices [J]. IEEE Transactions on Medical Imaging,2004, 23(1) :73.
  • 5Zuo W, Zhang D, Yang J, et al. BDPCA plus LDA: A novel fast feature extraction technique for face recognition [J]. IEEE Transactions on Systems, Man, and Cybernetics-part B: Cybernetics, 2006, 36(4) :946.
  • 6Stanford D C, Pitton J. Multi-resolution hidden markov trees for analysis of automatic target recognition algorithms[C]// International Conference on Image Processing. Vancouver: IEEE Press, 2000:942.
  • 7Sridharan K, Govindaraju V. A sampling based approach to facial feature extraction [C] // Fourth IEEE Workshop on Automatic Identification Advanced Technologies. New York: IEEE Press, 2005: 51.
  • 8Clausi D A, DENG H. Design-based texture feature fusion using Gabor filters and co-occurrence Probabilities [J]. IEEE Transactions on Image Processing, 2005, 14(7):925.
  • 9Manian V, Vasquez R. Texture discrimination based on neural dynamics of visual perception [ C ] // Proceedings of the International Joint Conference on Neural Networks. U. S. A: IEEE Press, 2003 : 113.
  • 10Farmer M E, Shugars D. Application of genetic algorithms for wrapper-based image segmentation and classification [C]// IEEE Congress on Evolutionary Computation. Canada: IEEE Press, 2006:1300- 1307.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部