期刊文献+

颗粒和纤维混杂增强复合材料力学性能的三维有限元模拟 被引量:25

3D FEM simulation of mechanical property of composites reinforced by both particles and fibers
下载PDF
导出
摘要 为了研究原位合成TiB纤维和TiC颗粒混杂增强的钛基复合材料的力学性能与微观结构的关系,根据其微观结构特点,并基于随机序列吸附(RSA:Random Sequential Adsorption)方法,提出了短纤维和颗粒混杂增强的三维有限元模型。该模型可以生成位置及取向随机分布的多纤维多颗粒的代表体积单元,同时纤维的长径比、取向分布规律可以任意调整,适合各种不同的混杂增强复合材料微观结构的模拟。对比实验测试结果,证明该模型对混杂增强的复合材料的模拟较为精确。模拟结果显示:在纤维状增强体中,平行于加载方向的增强体承载了最大的应力,而与加载方向约呈45°角的增强体承受的应力最小;颗粒状增强体承受的应力相比平行于加载方向的纤维状增强体要小很多;基体中应力在加载方向上靠很近的增强体之间较高。 In order to investigate the relation between mechanical property and microstructure of in-situ synthesized Ti matrix composites reinforced by both short-fiber-like TiB and particle-like TiC, a 3D cell model was developed on the basis of the RSA (Random Sequential Adsorption) method, according to observed microstructures. This model can be used to generate a multi-inclusion cell with both randomly distributed short-fiber-like and the particle-like reinforcements, and that the aspect ratio of short-fiber-like reinforcements and the distribution rule can be arbitrarily set. While compared with the experimental results, the simulation results obtained using this model are relatively accurate. The results show that: in the short-fiber-like reinforcements, the ones parallel to the direction of the applied stress bear the most stress, while the ones at an angle of about 45 degrees with the direction of the applied stress bear the least. The particle-like ones bear much less stress than the short-fiber-like ones parallel to the direction of the applied stress. The stress in the matrix is higher in the local where the reinforcements are compact along the direction of the applied stress.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2006年第2期14-20,共7页 Acta Materiae Compositae Sinica
基金 上海市重大基础研究项目(04DZ14002) 全国优秀博士学位论文作者专项基金(200332)
关键词 三维有限元模拟 原位自生钛基复合材料 混杂增强 力学性能 3D FEM simulation in-situ synthesized Ti matrix composites hybrid reinforcement mechanical property
  • 相关文献

参考文献11

  • 1Zhang X N,Lü W J,Zhang D,et al.Insitu technique for synthesizing (TiB+TiC)/Ti composites[J].ScriptaMaterialia,1999,41(1):39-46.
  • 2高庆,康国政,杨川,张娟.高温下短纤维增强金属基复合材料界面的微观结构和热残余应力状态研究[J].复合材料学报,2002,19(4):46-50. 被引量:11
  • 3柴东朗,李晓军,曹利强,郗雨林.增强相形态对复合材料微区力学状态影响的有限元分析[J].应用力学学报,2004,21(3):145-148. 被引量:5
  • 4Van den Heuvel P W J,Wubbdts M K,Young R J,et al.Failure phenomena in two-dimensionalmulti-fibre model composites:5.A finite element study[J].Composites PartA,1998,29A:1121-1135.
  • 5Lorca J L,Segurado J.Three-dimensional multiparticle cell simulations of deformationand damage in sphere-reinforced composites[J].Materials Science and EngineeringA,2004,364:267-274.
  • 6Bohm H J,Eckschlager A,Han W.Multi-inclusion unit cell models for metal matrixcomposites with randomly oriented discontinuous reinforcements[J].Computational MaterialsScience,2002,25:42-53.
  • 7MSC.Marc Volume B:Element library[M].2004,3:561-564.
  • 8Ge D B,Gu M Y.Mechanical properties of hybrid reinforced aluminum basedcomposites[J].Materials Letters,2001,49:334-339.
  • 9ASM International Handbook Committee.Metals Handbook(9th Edition)[M].New York:ASMMetal Park,1980.430-431.
  • 10Bauccio M.ASM Engineered Materials Reference Book (2nd Edition)[M].New York:ASMInternational,1994.512513.

二级参考文献13

  • 1黄玉东,孔宪仁,张志谦,魏月贞.界面层对纤维与基体间载荷传递能力的影响[J].复合材料学报,1996,13(3):21-26. 被引量:22
  • 2张喜燕.Al2O3短纤维/Al合金基复合材料断裂机制的TEM原位观察[M].成都:西南交通大学,1996.31-38.
  • 3[1]Lloyd DJ. Particle reinforced aluminium and magnesium matrix composites. Int mater Rev 1994;39(1):1~23
  • 4[2]Clyne TW, Withers PJ. An introduction to metal matrix composites. Cambridge: Cambridge University Press, 1993
  • 5[3]Sinclair I, Gregson PJ. Structural performance of discontinuous metal matrix composites. Mater sci Technol 1997;13:709~26
  • 6[4]Aboudi J. Micromechnical analysis of composites by the method of cells. Appl. Mech Rev 1996;49(10):S83~91
  • 7[5]Iyer SK, Lissenden CJ, Amold SM. Local and overall flow in composites predicted by micromechnics. Composites: Part B 2000;31:327~43
  • 8[7]S.A. Meguid, G.Shagal, R.Paskaramoorthy. On ythe local elastic-plastic behaviour of the interface in titanium/silicon carbide composite. Composites Part A 2002; 33: 1629~1640
  • 9[8]C. Mayencourt, R.Schaller. Mechanical-stress relaxation in magnesium-based composites. Mater Sci Eng 2002; A325: 286~291
  • 10[9]Toshio Mura. Micromechanics of Defects in Solids, Dordrecht Martinus Nijhoff, 1987

共引文献13

同被引文献304

引证文献25

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部