期刊文献+

基于粒子群算法的非线性二层规划问题的求解算法 被引量:6

Particle Swarm Optimization Based Approach to Solving Nonlinear Bilevel Programming Problems
下载PDF
导出
摘要 粒子群算法(Particle Swarm Optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO通过粒子追随自己找到的最好解和整个群的最好解来完成优化。该算法简单易实现,可调参数少,已得到了广泛研究和应用。本文根据该算法能够有效的求出非凸数学规划全局最优解的特点,对非线性二层规划的上下层问题求解,并根据二层规划的特点,给出了求解非线性二层规划问题全局最优解的有效算法。数值计算结果表明该算法有效。 Particle swarm optimization (PSO) is a new optimization technique originating in artificial life and evolutionary computation. It completes the optimization following the personal best solution of each particle and the global best value of the whole swarm. PSO can be easily implemented and few parameters need to be tuned. It has been successfully applied to many areas. According to particle swarm optimization non-convex mathematical problems of global optimization, the upper-level and lower-level problems of nonlinear bilevel programming problem (BPP) can be solved, and according to the feature of bilevel programming, an efficient algorithm is presented in solving nonlinear BPP in this paper. The numerical computation results indicate the proposed algorithm is effective.
出处 《运筹与管理》 CSCD 2006年第2期18-22,共5页 Operations Research and Management Science
基金 国家自然科学基金资助项目(50479039)
关键词 二层规划 粒子群算法 全局优化 bilevel programming particle swarm optimization global optimization
  • 相关文献

参考文献14

  • 1Bard J F.Coordination of a multidivisional organization thmugh two levels of management[M].OMEGA,International Journal of Management Science,1983,11:457-468.
  • 2Aiyoshi E,Shimizu K.A solution method for the static constrained stackelberg problem via penalty method[J].IEEE Trans On Automatic Control,1984,29:1111-1114.
  • 3Shimizu K,Ishizuka Y.Optimality Conditions and algorithms for parameter design problems with two level structure[J].IEEE Trans On Automatic Control,1985,30:986-992.
  • 4Savard G,Gauvin J.The steepest descent direction for the nonlinear bilevel programming problem[J].Operations Research Letters,1994,15:265-272.
  • 5Bard J F.An algorithm for solving the general bilevel programming problem[J].Mathematics of Operations Research,1983,8:260-272.
  • 6Mathieu R,Pittard L,Anandalingam G.Genetic algorithm based approach to bi-level linear programming[J].Operations Research,1994,28(1):1-21.
  • 7Kemal H S.,Amy R C.A dual temperature simulated annealing approach for solving bilevel programming problems[J].Computers and Chemical Engineering,1998,23:11-25.
  • 8GüMüS Z H,Floudas CA.Global optimization of nonlinesr bilevel programming proilems[J].Joumalof Global Optbmization,2001,20:1-21.
  • 9Eberhart R C,Kennedy J.A new optimizer using particle swarm theory.In:Proceedings Sixth Symposium on Micro Machine and Human Science,Piscataway,NJ,IEEE Service Center,1995.39-43.
  • 10Kennedy J,Eberhart R.Particle swarm optimization[C].IEEE International Conference on Neural Networks (Perth,Australia),IEEE Service Center,Piscataway,NJ,1995,Ⅳ:1942-1948.

共引文献3

同被引文献59

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部