期刊文献+

基于多尺度图像块的SAR图像无监督分割

The Unsupervised Segmentation of SAR Imagery Based on Multiscale Image Block
下载PDF
导出
摘要 提出了一种基于多尺度图像块的SAR图像无监督分割方法。在利用高斯混合模型进行图像分割时,大多采用的是基于单个像素的分割方法,这种方法由于未考虑像素周围邻域结点的信息,分割精度往往不高。论文考虑到SAR图像具有很强的斑点噪声,为了更好地抑制斑点噪声对分割结果的影响,在多分辨分析的基础上提出了一种基于多尺度图像块的图像分割新方法。实验表明,这种基于多尺度图像块的分割较在单个像素下多尺度Markov模型的MPM分割好,分割精度有了较大的提高。 An unsupervised segmentation of SAR imagery based on Muhiscale image block is proposed.ln the segmentation of Gaussian mixture model,the method of single pixel value has been widely used,since it does not consider the neighborhood information of pixels and always gets poor precision.It is considered that there are a lot of speckles in SAR imagery,for segmenting imagery well,we propose a new method of imagery segmentation based on Multiscale block.Experimental results demonstrate the effectiveness of this new method is better than MPM segmentation of single pixel based on Multiscale Markov model.
作者 熊毅 田铮
出处 《计算机工程与应用》 CSCD 北大核心 2006年第10期46-48,共3页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60375003) 航空科学基金资助项目(编号:03153059)
关键词 SAR图像 EM算法 多尺度图像块 无监督分割 SAR imagery,EM algorithm,multiscale image block,unsupervised segmentation
  • 相关文献

参考文献7

  • 1J Marroquin,S K Mitter,T Poggio.Probabilistic solution of ill-posed problems in computational vision[J].J Amer Stat Assoc,1987;82(3):76~89
  • 2余鹏,封举富.基于高斯混合模型的纹理图像分割[J].中国图象图形学报(A辑),2005,10(3):281-285. 被引量:27
  • 3Li J,R M Gray,R A Olshen.Multiscale image classification by hierarchical modeling with two dimensional hidden markov models[J].IEEE Trans Image Proc,2000;46:1826~1841
  • 4C Fosgate,H Krim et al.Multiscale segmentation and anomaly enhancement of SAR imagery[J].IEEE Trans Image Proc,1997 ;6:7~20
  • 5Jain A K,Duin R,Mao J.Statistical pattern recognition:A review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000;22(1):4~38
  • 6Dempster A,Laird N,Rubin D.Maximum likelihood estimation from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society,Series B,1977;39(1):1~38
  • 7茆诗松 王静龙 濮晓龙.高等数理统计[M].北京:高等教育出版社,2003..

二级参考文献10

  • 1Dempster A, Laird N, Rubin D. Maximum likehood estimation from incomplete data via the EM algorithm [ J ]. Journal of the Royal Statistical Society. Series B, 1977, 39 ( 1 ): 1 ~ 38.
  • 2Kohonen T, Kaski S, Lappalainen H. Self-organized formation of various invariant feature filters in the adaptive-subspace SOM [ J ].Neural Computation, 1997, 9(6) :1321 ~ 1344.
  • 3Lu H, Fainman Y, Hecht_ Nielsen R. Image manifolds [ A ]. In:Proceedings of SPIE Applications of Artificial Neuralworks in Image Processing Ⅲ [ C ], Bellingham, WA, USA, 1998, 3307:52 ~ 63.
  • 4Turk M A, Pentland A P. Face recognition using eigenfaces[ A ]. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1991: 586 ~ 591.
  • 5Jain A K, Duin R, Mao J. Statistical pattern recognition: A review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22( 1 ): 4 ~ 38.
  • 6Figueiredo M A T, Jain A K. Unsupervised learning of finite mixture models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 ( 3 ) :381 ~ 396.
  • 7Akaike H. A new look at statistical model identification [ J ]. IEEE Transactions on Automatic Control, 1974, 19(6) :716 ~ 723.
  • 8Chickering D M, Heckerman D. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables [ R ].Microsoft Research Technical Report, MSR-TR-96-08, 1997.
  • 9Barron A, Rissanen J, Yu B. The minimum description length principle in coding and modeling [ J ]. IEEE Transactions on Information Theory, 1998, 44(6) :2743 ~ 2760.
  • 10McLachlan G, Peel D. Finite mixture models[M]. New York: John Wiley & Sons, 2000.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部