期刊文献+

一种基于实例推理的概念学习方法 被引量:2

A Concept Learning Method in Case-based Reasoning
下载PDF
导出
摘要 特征结构是一种新的实例表示方法,结合本体提供的术语和类别层次关系特别易于表达复杂的关系结构型实例,首先讨论了一种基于特征结构实例推理的概念学习方法:C-LID算法,在提出基于特征结构实例推理解决概念学习问题的相似原则和语义包含原则基础上分析了C-LID算法的缺点,进一步提出了基于豪斯多夫距离和K-S相似度的消极概念学习方法R-LID,一方面R-LID是C-LID算法在相似原则下的扩展,另一方面R-LID避免了最多最优偏置下近邻选取不当造成的误差。将R-LID用于化合物致癌等级划分的开放问题上,结果表明R-LID算法具有更好的性能。 Feature term is a new case representation method,combined with the partial orders in taxonomic ontology, which is able to encode complicated relational cases.Firstly,a concept learning method in feature term Case-based Reasoning C-LID is introduced and two basic principles are proposed.Secondly,a lazy learning algorithm R-LID based on Hausdorff distance and K-S similarity is put forward to ameliorate C-LID in two aspects: (1)to define a extended approach to C-LID; (2)to avoid the negative effect under majority rule.Experiments on the Toxicology dataset show that R-LID can do better than H-S,LID and C-LID.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第10期87-90,212,共5页 Computer Engineering and Applications
关键词 基于实例推理 特征结构 消极归纳 本体 case-based reasoning,feature term,lazy induction,ontology
  • 相关文献

参考文献9

  • 1E Armengol,E Plaza.Lazy induction of descriptions for relational case-based leaming[C].In:Proceedings of ECML-2002,Springer-Verlag,2002:13~24
  • 2E Armengol,E Plaza.Remembering similitude terms in CBR[C].In:3rd Int Conf on Machine Learning and Data Mining,Springer Verlag,2003:121~130
  • 3E Plaza.Case as terms:A feature term approach to the structuredrepresentation of cases[C].In:number 1010 in Lecture Notes in Artificial Intelligence,Springer-Verlag,1995:265~276
  • 4E Armengol,E Plaza.Bottom-up induction of feature terms[J].Machine Learning,2000 ;41 (1):259~294
  • 5E Plaza.Case as terms:A feature term approach to the structured representation of cases[C].In:number 1010 in Lecture Notes in Artificial Intelligence,Springer-Verlag,1995:265~276
  • 6E Armengol,E Plaza.Similarity assessment for relational CBR[C].In:Int Conf on Case Based Reasoning 2001,Springer-Verlag,2001:44~58
  • 7Ramon López de Mántaras.A distance-based attribute selection measure for decision tree induction[J].Machine Learning,1991 ;(6):81~92
  • 8B Pfahringer.(the futility of)Trying to predict carcinogenicity of chemical compounds[C].In:Proceedings of the Predictive Toxicology Challenge Workshop,2001
  • 9Edgar G A.Measure,Topology and Fractal Geometry[M].3rd print,Springer-Verlag,1995

同被引文献19

  • 1Dietterich T G, l.athrop R H, Lozano-Perez T. Solving the Multiple Instance Problem with Axis- parallel Rectangles [J]. Artificial Intelligence, 1997, 89(1)= 31 -71.
  • 2Zhang M L, Zhou Z H. Multi instance Clustering with Applications to Multi instance Prediction[J]. Applied Intelligence, 2009, 31(1): 47-68.
  • 3Wang J, Zucker J D. Solving the Multiple-instance Problem: A Lazy Learning Approach[C]//Proceed ings of the 17th ICMI: San Francisco= Morgan Kaufmann Publishers, 2000.
  • 4Zhou Z H, Yu Y. Ensembling Local Learners Through Multlmodal Perturbation[J]. IEIdE Trans SMC--Part B : Cybernetics,2005, 35(4) : 725 -735.
  • 5Zafra A, Romero C, Ventura S. Multiple Instance Learning for Classifying Students in Learning Man- agement Systems[J]. Expert Systems zc, ith Appli cations, 2011, 38(12): 15 020 -15 031.
  • 6Tsai C F, Hung C. Cluster Ensembles in Collabora- tive Filtering Recommendation[J]. Applied Soft Computing, 2012, 12(4): 1 417-1 425.
  • 7李聪,梁昌勇.基于属性值偏好矩阵的协同过滤推荐算法[J].情报学报,2008,27(6):884-890. 被引量:19
  • 8李忠俊,周启海,帅青红.一种基于内容和协同过滤同构化整合的推荐系统模型[J].计算机科学,2009,36(12):142-145. 被引量:40
  • 9李春,朱珍民,高晓芳,陈援非.基于邻居决策的协同过滤推荐算法[J].计算机工程,2010,36(13):34-36. 被引量:25
  • 10朱郁筱,吕琳媛.推荐系统评价指标综述[J].电子科技大学学报,2012,41(2):163-175. 被引量:251

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部