期刊文献+

de Sitter空间中的紧致极大类空子流形(英文)

Compact Maximal Spacelike Submanifolds in a de Sitter Space
下载PDF
导出
摘要 证明了de Sitter空间中的紧致极大类空子流形是全测地的. This paper proves that n-dimensional compact maximal spacelike submanifolds in a de Sitter Sp^(n+p)(c) are fully geodesic.
作者 寿乐丽
机构地区 宁波大学理学院
出处 《宁波大学学报(理工版)》 CAS 2006年第1期5-8,共4页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 ProjectSupportedbyScientificResearchFoundofZhejiangProvicialEducationalDepartment(20051760)andScientificResearchFoundofNingboUniversity(200542)
关键词 紧致极大类空子流形 DE SITTER空间 全测地的 compact maximal spacelike submanifolds de Sitter fully geodesic
  • 相关文献

参考文献7

  • 1B O' Neill.Semi-Riemannian Geometry[M].New York:Academic Press,1983.
  • 2E Calabi.Examples of Bernstein problems for some nonlinear equations[J].Proc Symp Pure Appl Math,1970,15:223-230.
  • 3Cheng S Y,Yau S T.Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces[J].Ann Math,1976,104:407 -419.
  • 4A J Goddard.Some remarks on the existence of spacelike hyperbolic of constant mean curvature[J].Math Proc Camb Philos Soc,1977,82:489-495.
  • 5T E Treibergs.Entire hypersurfaces of constant mean curvature in Minkowski 3-space[J].Invent Math,1982,66:39-56.
  • 6K Akutagawa.On space-like hypersurfaces with constant mean curvature in the de Sitter space[J].Math Z,1987,196:13-19.
  • 7J Ramanathan.Complete space-like hypersurfaces of constant mean curvature in the de Sitter space[J].Indiana Univ Math J,1987,36:349-359.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部