摘要
The evolution of the grain structures in AA2195 Al-Li alloy plate warm-rolled by 80% reduction during recrystallization annealing at 500 ℃ was investigated by electron backscatter diffraction, scanning electron microscopy and transmission electron microscopy. It is found that the elongated grain structures are caused by the lamellar distribution of recrystallization nucleation sites, being lack of large second phase particles (>1 μm), and dispersive coherent particles (such as δ′ and β′) concentrated in planar bands. The recrystallization process may be separated into three stages: firstly, recrystallization nucleation occurs heterogeneously, and the nuclei are concentrated in some planar zones parallel to rolling plane. Secondly, the grain boundaries interacted with small particles concentrate in planar bands, which is able to result in the elongated grain structures. The rate of the grain growth is controlled by the dissolution of these small particles. Thirdly, after most of small particles are dissolved, their hindrance to migration of the grain boundaries fades away, and the unrecrystallized zones are consumed by adjacent recrystallized grains. The migration of high angle grain boundaries along normal direction leads a gradual transformation from the elongated grains to the nearly equiaxed, which is driven by the tension of the grain boundaries.
The evolution of the grain structures in AA2195 Al-Li alloy plate warm-rolled by 80% reduction during recrystallization annealing at 500℃ was investigated by electron backscatter diffraction, scanning electron microscopy and transmission electron microscopy. It is found that the elongated grain structures are caused by the lamellar distribution of recrystaUization nucleation sites, being lack of large second phase particles (〉 1μm), and dispersive coherent particles (such as δ′ and β′concentrated in planar bands. The recrystallization process may be separated into three stages: firstly, recrystallization nucleation occurs heterogeneously, and the nuclei are concentrated in some planar zones parallel to rolling plane. Secondly, the grain boundaries interacted with small particles concentrate in planar bands, which is able to result in the elongated grain structures. The rate of the grain growth is controlled by the dissolution of these small particles. Thirdly, after most of small particles are dissolved, their hindrance to migration of the grain boundaries fades away, and the unrecrystallized zones are consumed by adjacent recrystallized grains. The migration of high angle grain boundaries along normal direction leads a gradual transformation from the elongated grains to the nearly equiaxed, which is driven by the tension of the grain boundaries.
出处
《中国有色金属学会会刊:英文版》
CSCD
2006年第2期321-326,共6页
Transactions of Nonferrous Metals Society of China
基金
Project (2004053304) supported by the Doctral Program Foundation of Education Ministry of China
Projects(50231030, 50301016) supported by the National Natural Science Foundation of China
关键词
AL-LI合金
铝合金
晶体结构
再结晶
等轴晶
AA2195 Al-Li alloy
rnicrostructure evolution
elongated grains
equiaxed grains
recrystallization
second phase particles