期刊文献+

具有非负面具的多元细分方程 被引量:1

原文传递
导出
摘要 研究如下形式的细分方程: 其中φ是未知的,a是具有有限长的非负序列,称为细分面具,M是一个s×s 整数矩阵,满足limn→∞M-n=0.利用由短阵M和面具a生成的转移算子的谱半径来刻画上述方程在L2中解的存在性.当M=2.s=1时,得到了上述方程存在连续解的充分必要条件.
作者 李松 周兴龙
出处 《中国科学(A辑)》 CSCD 北大核心 2006年第4期458-469,共12页 Science in China(Series A)
基金 国家自然科学基金资助项目(批准号:10071071 10471123)
  • 相关文献

参考文献1

共引文献3

同被引文献26

  • 1Li G, Ma W. A method for constructing interpolatory subdivision schemes and blending subdivisions. Comput Graph Forum, 2007, 26:185-201.
  • 2Romani L. From approximating subdivision schemes for exponential splines to high-performance interpolating algo- rithms. J Comput Appl Math, 2009, 224:383-396.
  • 3Conti C, Gemignani L, Romani L. From symmetric subdivision masks of Hurwitz type to interpolatory subdivision masks. Linear Algebra Appl, 2009, 431:1971-1987.
  • 4Conti C, Gemignani L, Romani L. Solving Bezout-like polynomial equations for the design of interpolatory subdivision schemes. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. New York: Association for Computing Machinery, 2010, 251-256.
  • 5Beccari C V, Casciola G, Romani L. A unified framework for interpolating and approximating univariate subdivision. Appl Math Comput, 2010, 216:1169-1180.
  • 6Conti C, Gemignani L, Romani L. From approximating to interpolatory non-stationary subdivision schemes with the same generation properties. Adv Comput Math, 2011, 35:217-241.
  • 7Conti C, Romani L. Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduc- tion. J Comput Appl Math, 2011, 236:543-556.
  • 8Conti C, Gemignani L, Romani L. A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines. Adv Comput Math, 2013, 30:395-424.
  • 9Maillot J, Stare J. A unified subdivision scheme for polygonal modeling. Comput Graph Forum, 2001, 20:471-479.
  • 10Lin S, You F, Luo X, et al. Deducing interpolating subdivision schemes from approximating subdivision schemes. ACM Trans Graph, 2008, 27:1-7.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部